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Dim'usion on Two Space and Time Scales
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Diifusion is explored in a two-dimensional phase space in which a connected separatrix layer (web) of
intrinsic stochasticity bounds regions of regular motion (tiles). In the presence of weak extrinsic noise, if
the web diffusion dominates, the noise slows the web diffusion rate; if the extrinsic diffusion dominates,
the diffusion is enhanced. The diffusion is characterized by two space and time scales. For a local-
equilibrium model analytic calculations agree well with numerical results.

PACS numbers: 05.45.+b, 05.40.+j, 05.60.+w

An important phenomenon in nonlinear dynamics is
the diffusion through a divided phase space in the pres-
ence of extrinsic stochasticity. In two degrees of free-
dom the divided phase space generically separates into
regions of connected intrinsic stochasticity and regions
dominated by Kol'mogorov-Arnol'd-Moser (KAM)
curves on which the intrinsic motion is regular. ' For
systems periodic in a phase variable, if phase-spanning
KAM curves exist, the diffusion in the presence of ex-
trinsic stochasticity can be characterized by regions of
the action for which slow extrinsic stochasticity diffuses
phase points across KAM curves in series with regions of
the phase space in which the more rapid intrinsic
diffusion prevails. ' The global diffusion rate is the
slow extrinsic rate but over a reduced phase space. In
contrast, over a primarily connected intrinsically stochas-
tic region with imbedded KAM surfaces (islands) the in-

trinsic rate is slowed by the extrinsic diffusion in and out
of the island regions. Usually this latter effect is of
minor importance, but, as we shall see below, it is closely
related to the phenomenon to be examined.

If a Hamiltonian system is constructed by resonantly
perturbing a linear oscillator a new phenomenon appears
in two degrees of freedom, that of a connected stochastic
web. Furthermore, if the perturbation is a periodic 6'

function with a 1ow-order resonance, the resulting sto-
chastic web is globally uniform over the phase space.
The tiling of the phase space into a connected stochastic
web surrounding tile regions by KAM curves creates a
simple topology for studying combined intrinsic and ex-
trinsic stochasticity. Of particular interest is the interac-
tion of the large space scale at which phase points cross
separtrices between tiles and the small-space-scale
diffusion within each web or tile.

An estimation of this two-space-scale diffusion was
made in Ref. 6, where it was recognized that the
diffusion rate should be proportional (in some limit) to
the ratio of phase space of the web to the total phase
space. However, an explicit calculation of the intrinsic
web diffusion was not made, so that a complete treat-
ment of the two-space-scale diffusion could not be made.
In Ref. 7 we have explicitly calculated the global rate of

where a = co T is the rotation angle of the oscillator be-
tween kicks, K, is the maximum kick amplitude, and u

and v are the normalized velocity components. The
mapping is composed of a product of two involutions, a
step change in u followed by a rotation, and is therefore
measure preserving. At a resonance we have a=2trp/q.
For this study we take p=l and q =4, giving four kicks
per oscillation period. The twist can then be removed by
iterating the mapping four times, keeping only the lowest
order terms in K„ to obtain a reduced mapping. Adding
random changes in u and v to the reduced mapping we
obtain

vn+ ] vn 2Ka sinun +ur ~

un+ ] un +2Ka sinvn+ ] +vr ~

where u, and v, are the extrinsic stochastic components.
A piece of the resulting phase space is shown in Fig. 1,
for K =0.5 and u„=v„=0, for a few initial conditions,
showing both the KAM surfaces within a tile, and the
stochastic continuous web surrounding the separatrix
given to lowest order by

v = +' (u+tr)+2trm, (2)

where m is an integer. In terms of the normalized action
w, which goes from zero on the separatrix to unity at the

web diffusion D„,b. We then reasoned qualitatively that
the inclusion of extrinsic noise would lead to an asymp-
totic (in time) diffusion in which "the overall diffusion
rate is a product of the global separatrix rate (D„,b) and
the ratio of phase-space areas of intrinsic to extrinsic sto-
chasticity. " It is the purpose of this Letter to numerical-
ly confirm this assertion, to determine what is meant by
asymptotic in terms of the two-space scales and two time
scales involved, and to examine the diffusion on the
nonasymptotic transition time scales.

We use the mapping representation for the kicked os-
cillator '

u„+1 =(u„+K,sinv„)cosa+ v„sina,

v„i|= —(u„+E,sinv„)sina+ v„cosa,
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FIG. l. A portion of the phase space with a 4:1 resonance,
showing the stochastic web and a few curves of constant Ham-
iltonian within a tile.

The thickness of the stochastic web is

wi =(2x/K,i)exp( —m'/2K, ) . (4)

Integrating (3) over w i we obtain the average r over the
web

r,„,=z /K, + (.6 —21n20n+61nK, )/K, .

The number of rotation periods per separatrix crossing is
found from the solution of a local diffusion mechanism
within the web, assuming nearly uniform local phase
space, to be

n =sr'/4K .

We shall see that this local uniformness is also charac-
teristic of the asymptotic diffusion over the entire tile in
the presence of noise. Assuming normal random-walk
diffusion through the web with a Gaussian distribution
on the large-tile space scale

W(L) = (mNLt, t, ) ' exp[ L /NL„t, ], —

then the root-mean-square spreading L, , is given by

r, , =(D„„N)'",
where N is the number of mapping periods, and

D web =L tiie/Ttiie =2& /nrave s

2 . = 2

(7)

where L„i,=&2 x is the distance between adjacent tile

tile center, the following results were obtained, valid near
the separatrix, with no extrinsic noise. The rotation
period within the tile, in units of the mapping period, is

r(w) =2(2 —lnw)/K, .

N
FIG. 2. DiA'usive spread of the distribution vs iteration

number for a representative sample of values of perturbation
parameter K and random step l. The 1000 initial conditions
are within the stochastic web in the neighborhood of an unsta-
ble fixed point.

centers. Equation (8) has been verified, numerically,
over a range of EC,.

We now introduce extrinsic noise, as a uniformly dis-
tributed random variable between + l, and numerically
examine the result. We first examine, directly, the ex-
pansion of I, , with A for a range of EC 's and noise
coef5cients I in Fig. 2. The steeper slopes of 2, on
log-log coordinates, give the usual proportionality for
random-walk diffusion L,m, ~N ' . With no noise, after
an initial transient representing spreading within the web
away from initial conditions near the unstable fixed
point, all EC 's follow this proportionality, with the pro-
portionality constant given by D„,b in (8). With a rela-
tively large noise coefficient of I = —,', , and for the larger
intrinsically stochastic webs, E =0.5 and 0.7, after an
initial transient period between 10 and 10 iterations
with slower than random-walk diA'usion, the L„,tx:N'~
reestablishes itself, but with a lower proportionality con-
stant. For these E values, and a smaller noise
coefficient of I= 200, the random-walk proportionality
has approximately established itself by N=10 (only
K, =O.S is shown over this N). For a smaller noise
coefficient I =,0'00, we obtain a diA'erent result in which
the diffusion at first follows more closely the random-
walk diffusion slope and then falls to a lower propor-
tionality, over the time of observation (illustrated for
K, =0.5 in the figure). To understand these results we
show, in Fig. 3, the fraction of phase points in the web
f~ versus iteration number, for the values of K, and
noise discussed above. For a noise coefFicient of I = 2'0,
after an initial few iterations in which all phase points
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FIG. 3. The fraction of phase points within the web vs itera-
tions, with K, and l as parameters; 10000 initial conditions in

the web. 2D- =L tee/zex, (9)

While we have concentrated our attention on the cases
dominated by the large-space-scale (web) diffusion, the
web diffusion is not always dominant. Since the random
steps at the small space scale take place at each mapping
step the extrinsic noise can dominate the diffusion when
the noise step is sufficiently large and the time for the in-
trinsic large-space-scale step is sufficiently slow. In fact,
the extrinsic diffusion is itself a two-space-and-time-scale
process, when acting upon a phase-space topology of the
type considered here (e.g. , Fig. 1). Local diffusion
within each tile results in separatrix crossings. Because
of the rotation of particles within each tile on a fast time
scale the result is to step the crossing particles effectively
the distance between tile centers. The global extrinsic
diffusion, D,„, is then governed by the step size of a tile
and a characteristic time for the exchange of tile phase
space across the bounding separatrices,

are in the web, there is a transition to an asymptotic
value which occurs for both K, =0.5 and 0.7 at about the
same number of iterations between 10 and 10, but with
different asymptotes. Referring back to Fig. 2, we see
that sometime after the asymptotic ratio of web to tile
phase points is reached, the diffusion behaves as a ran-
dom walk. For the case of K =0.7, comparing the noise
l =

pp case with the no-noise diffusion we find the ratio
of iterations for a given L„„D/D„,b, to be the asymp-
totic fjy, found to be 0.3 in Fig. 3. We conclude that the
tile particles, in equilibrium with the surrounding web,
act as a local source for the web diffusion, as we had pre-
viously postulated. A numerical measurement of the
area ratio gives f=0.29, in good agreement. The
diffusion calculation for K =0.5 with a noise coefficient
of l= 2()p, at an asymptotic value near N=10, gives

D/D„,b= 0.07 in good agre—ement with tv =0.07 found
from the asymptotic value in Fig. 3. The measured area
ratio is f=0.065, again in good agreement.

The transition time to the asymptotic state is related
to the extrinsic stochastic filling time for the tile. We
use the usual random-walk argument to compute the
time to diffuse from the web to the center of the tile, a
distance of n/J2. For noise amplitude l = —,', , the aver-

age step across KAM surfaces „L„„=l/2042, giving a
diffusion time N =(20m) =4x10 . For noise amplitude
l =, the time is a factor of 100 larger, or N=4x10 .
These times are consistent with the numerical observa-
tions of Fig. 3.

The dynamics, however, include some additional sub-
leties. The edge of the distribution, i.e., that part created
on a time scale shorter than the extrinsic diffusion time
across a tile, is clearly not asymptotic. This accounts for
the near approach of fN to the asymptotic value while

D/Dw, b has not yet reached its asymptotic value, i.e.,

while the diffusion rate is not yet N '

we can characterize i,„by...=(g..~.,) (10)

1 I
Jh ~Jib

dx g(B)d6= —,', . (12)

Substituting (11) and (12) in (10) results in

z,„=3m/l . (13)

Extrinsic diffusion dominates the intrinsic diffusion for
z,„(nz,„,/f, with the rate of diffusion then character-
ized by (9).

The competition is illustrated numerically in Fig. 4, in
which for a fixed N, L„,is plotted against K„with noise
as a parameter. The case with no noise has the expected
dependency L, , ~ K, . The diffusion with extrinsic

where f„is the fraction of phase space that is accessible
to crossing the separatrix on each mapping step due to
the extrinsic stochasticity, and P,„ is the probability for
that phase space to actually cross. We use simple
geometric arguments to calculate these quantities. As
mentioned earlier, for our numerical investigation we
have chosen u, and v„ to be uniformly distributed ran-
dom variables between ~l. The accessible phase space
consists of four edge strips of length x&2 and width l&2,
while the entire tile phase space is 2n . The fraction of
accessible phase space is then

I,„=41/K.

For uniformly distributed u, and v„ the probability of a
step a distance 6 across curves of constant Hamiltonian
can be directly calculated to be

g(8) = (1/2l ) (J2l —6) .

The phase-space crossing probability in the accessible
layer is then
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below the l = 2'0 case at K, =0.1 because after 2' itera-
tions it is not yet asymptotic; the occupied phase space
within the tile regions is therefore smaller. The other in-

teresting feature of Fig. 4 is the break in the slopes of
L, , with noise. These should occur when r„1,= r,„, i.e.,
when
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FIG. 4. DiA'usive spread of the distribution vs K with l as a
parameter, after 2' iterations for 1000 initial conditions in the
web.

which we have verified, numerically, by the positions of
the slope changes in Fig. 4.

In conclusion, we are able to understand two-time-step
diffusion in terms of establishing a local quasiequilibri-
um. The technique can be used to calculate the diffusion
through a divided phase space consisting of both intrinsic
and extrinsic diffusion, provided the structure of the
phase space is sufficiently uniform on the length scale
L„,over which the diffusion is to be calculated.

This work was supported in part by the Office of Na-
val Research Grant No. N00014-89-J-1097.

noise lies above the diffusion without noise for values of
K, at which the extrinsic diffusion is larger than the web
diffusion. For K =0.1, we expect the diffusion to be
governed by the extrinsic noise alone. For noise l = 20,
using (9) and (13) we calculate after 2' iterations that
L, , =82. This is significantly higher than the value

L„~,=60, found numerically, which indicates a hidden
missing factor that increases r,„over the simple analytic
estimate. One possibility is a nonuniformity in the phase
that may develop if the rotation frequency near the
separatrix [see Eq. (3)] is too slow. The gentle upward
slant of L„,as a function of K, in the cases dominated
by extrinsic stochasticity may be indicative of this. The
lower-noise case I= 200 does not lie a factor of 10
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