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An exposition is given of the fundamental ideas of the recently opened field of two-particle inter-

ferometry, which employs spatially separated, quantum mechanically entangled two-particle states.
These ideas are illustrated by a realizable arrangement, in which four beams are selected from the out-

put of a laser-pumped down-converting crystal, with two beams interferometrically combined at one
locus and two at another. When phase shifters are placed in these beams, the coincident count rates at
the two loci will oscillate as the phases are varied, but the single count rates will not.

PACS numbers: 03.65.Bz, 42. 10.Jd, 42.50.Dv, 42.50.Wm

After more than a century of interference experiments
with individual particles —photons, electrons, neutrons—a conceptually new field of interferometry has recently
been opened by employing correlated two-particle sys-
tems. ' Two-particle interferometry has already exhib-
ited new nonclassical optical phenomena, new confirma-
tions of quantum mechanics, and new violations of Bell' s

inequality (hence of the family of local realistic
theories), and it promises a rich mine of further results.

The essence of two-particle interferometry is the appli-
cation of techniques of beam recombination to two-

particle quantum states of the general form

I +& =2'"&
I a& t I r&2+ I» t I p&2~ .

Here
~
a)t and

~
B)t are orthonormal vectors in the Hil-

bert space of particle 1, and
~ P)2 and

~ y)2 likewise for
particle 2. Schrodinger called states like ~%') "entan-
gled,

" because they cannot be factored in any way into
the form

~ g) & ~ g)z. Entanglement is an extraordinarily
rich source of phenomena. When the two particles are
spatially separated, as in the polarization correlation ex-
periments of Wu and Shaknov and of the followers of
Bell, there are dramatic nonlocal eff'ects of entangle-
ment. The new phenomena studied in this Letter are ob-
tained when the production of entangled states of spa-
tially separated particles is combined with inter-
ferometric techniques. The purpose of this Letter is to
present the ideas of two-particle interferometry in some
generality, to propose some general schemes for realizing
these ideas, and to show how the experiments performed
and proposed so far are special cases of these schemes.

The general ideas which we emphasize are the follow-

ing. First, as stated in the preceding paragraph, two-
particle interferometry depends upon the preparation of

I kA I

= Iko I 1kB I
= Ikc I . (3)

State
~
+) describes a coherent superposition of two dis-

tinct pairs of correlated paths for particles 1 and 2. In
one of these, particle 1 enters beam A and is reAected
from mirror MA to phase shifter pt en route to beam
splitter Hi, from which it proceeds either to detector U~

or to detector Li, while particle 2 enters beam C and is

entangled two-particle quantum states. Second, there is
a wide range of choices of operators of which the

~
a) t,

~ y)z, ~
B)~, ~ P)2 of Eq. (1) are eigenvectors. The prolif-

eration of polarization experiments in the last few de-
cades may have given rise to the notion that polarization
eigenvectors are particularly appropriate for constructing
entangled states. As a matter of fact, however, the
eigenvectors of other operators can also be used, and in

particular the inost natural procedure in two-particle in-

terferometry is to use (approximate) eigenvectors of
linear momentum operators. Third, entangled states like

~

%') of Eq. (1) can be prepared by capitalizing upon the
fact that a conserved quantity, like linear momentum,
can be partitioned in various ways between two particles.
Fourth, standard interferometric techniques of directing,
phase shifting, and recombining beams can be applied to
entangled two-particle states, particularly when

~
a) t,

etc. , are approximate linear-momentum eigenvectors.
The general arrangement which we propose for two-

particle interferometry is shown in Fig. 1. An ensemble
of particle pairs is emitted by a source into the beams A,
B, C, D, with wave vectors kA, kg, kc, and kD, each pair
in the ensemble being in the quantum state

I +& =2 '"~
I kA&i I kc&2+ IkD)1 I kB)2~,

where
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(U|,Lz), and (L|,Uz), respectively. The results are

p(U|, Uz I yl, yz) =p«i, Lz I yl, ~z)

=tI'[ —,
' + —,

' cos(yz —pi+ e)l (sa)

MD

FIG. I. An arrangement for two-particle interferometry
with variable phase shifters. The source S emits two particles,
1 and 2, into four beams A, B, C, D. Index i (i =1,2) labels
the particle that is registered in detectors U; or L;. The state of
the pair is assumed to be given by Eq. (2), which is a superpo-
sition of two amplitudes: (I) particle 1 in beam A and particle
2 in beam C, and (II) particle 1 in beam D and particle 2 in

beam B. The two beams A and D of particle 1 are given a
variable relative phase shift p] before recombination near the
point O~ on the half-silvered mirror H~ (Mach-Zehnder inter-
ferometry). Likewise, the two beams B and C of particle 2 are
given a variable phase shift p2 before recombination near 02 on

the half-silvered mirror 02. The observed quantities of interest
are the two-particle coincident count rates as functions of p[
and p2 quantum mechanically predicted by Eq. (5).

ia(2 —1/2) (2
—1/2 ~ ~42) ] (4)

where the factors e' ' and e' ' arise from the phase
shifters encountered along the respective paths, and the
factors 2 ' i and 2 ' arise respectively from
reAection and transmission at the beam splitters. In each
term of Eq. (4) there are two factors in parentheses, the
first factor referring to a path of particle 1 and the
second to the correlated path of particle 2. The phase
factor e' depends upon the detailed placement of the
mirrors and beam splitters and is independent of tt i and

Expressions analogous to Eq. (4) can be given for
the amplitudes A(Li, Lz I p~, pz), A(Ut tLz I p~, pz), and
A(L~, UzI pl, pz), and rI times the absolute squares of
these amplitudes are the quantum-mechanical probabili-
ties for joint detection by the detector pairs (L~,Lz),

reAected from mirror Mc to beam splitter H2, from
which it proceeds to detectors U2 or L2. In the other
pair of paths particle 1 enters beam D and proceeds to
U~ or L ~

via MD and H ~, while particle 2 enters beam 8
and proceeds to Uz or Lz via Ma, pz, and Hz. If the
detectors are assumed to have quantum efficiency rl then
the quantum-mechanical probability for joint detection
of particles 1 and 2 by detectors U] and U2, when phase
shifts p1 and pz have been chosen, is tI times the abso-
lute square of the total amplitude A(U|, Uz I Pl, pz). This
total amplitude is the superposition of the amplitudes as-
sociated with each of the two pairs of correlated paths:

~(U, , UzIy, , ttz)=2 '"[(2 '"ie"')(2 '")

kA+ kg =kD+ kg =k, (7)

where k is the wave vector of the incident beam. Be-
cause of the p1acement of the pinholes,

I ltA I
=

I &o I, I ka I
=

I &c I,
but

II AI (
I &a I .

p(Ui, Lz I el, ez) =p(L|,U2 I 41 $2)

=tl'[ —,
' ——,

'
cos(ttz —

tt (+ 9)] . (5b)

The sinusoidal dependence of the joint detection prob-
abilities in Eqs. (5a) and (Sb) on the phase shifts is
characteristic of quantum-mechanical interference phe-
nomena. By monitoring the coincident count rates while
varying the phase shifts pl and pz, interference fringes
will be exhibited. Ho~ever, if one focuses attention upon
only one of the particles, it is easy to see that no interfer-
ence fringes will be exhibited. Specifically, the probabili-
ties of single detections by the various detectors are

p(Ui I 41 0» p(L| I 41 0»

p(U21 41 tt'2) ~p(L2 I 01 02) tI/2 ~

In short, Eq. (6) shows that the count rate of each of the
four detectors singly is constant, independent of tt 1 and

Only the coincident count rate exhibits interference
fringes. Consequently, we have an essentially two-
particle interferometric phenomenon. We emphasize
that this phenomenon is a consequence of the entangled
character of the state I

q').
The two-particle interferometric experiments referred

to in Refs. I and 2 used photon pairs produced by para-
metric down-conversion, a process in which a single pho-
ton incident upon a crystal gives rise to a pair of corre-
lated photons. In all of these experiments a pinhole ar-
rangement selected only two beam directions, symmetri
cally placed about the incident beam. If parametric
down-conversion is used as the source in the arrange-
ment of Fig. I, with the incident beam into the crystal
coming from the left, then the correlated directions of
Eq. (2) (A with C, D with B) are asymmetrical with
respect to the incident beam. Fortunately, both experi-
mental and theoretical studies reveal the existence of
asymmetrically directed down-converted pairs of pho-
tons. Consequently, the state I q) of Eq. (2) can be
prepared by piercing four linearly arranged pinholes in a
diaphragm downstream from the down-converting crys-
tal. The beams A, B, C, D of Fig. 1 will emerge from
the pinholes with wave vectors kA, kB, kc, kD satisfying
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From Eq. (8) it follows that the frequencies of the two
interfering beams at H& are equal, and the frequencies of
the two interfering beams at H2 are equal, even though
the frequencies at H~ and H2 are unequal.

We stress that the arrangement of Fig. 1 is only one
example of the resources of two-particle interferometry.
To indicate the richness of this field we shall briefly
sketch three other arrangements.

(1) In general, the beams A, B, C, and D need not be
coplanar in order to exhibit two-particle interference.
For example, if the source of the pairs is parametric
down-conversion, Eq. (7) is still satisfied in the arrange-
ment of four pinholes shown in Fig. 2. The pinholes
from which A and D emerge are pierced at arbitrary
points on a circle drawn on the diaphragm centered
about the incident beam direction I, and beams B and C
emerge from pinholes placed on another circle centered
about I, with the constraint that the AC and BD planes
intersect along I. If the beams A and D are brought to-
gether at a vertex lying in the AD plane, and the beams
B and C are brought together at a vertex in the BC
plane, then Eq. (5) still holds. In the special case in
which the two circles coincide, the four pinholes are lo-
cated at the corners of a rectangle centered about I, and

I kA I, I ka I, I kc I, and I kD I
are all eq~~l, so that the

frequencies at H& and H2 are equal. Suppose, further-
more, that the four pinholes are reduced to two and the
following identifications are made: A with B, C with D,
Mg with MB Mc with MD, and H~ with H2. The re-
sulting arrangement is that used in all the experiments of
Refs. 1 and 2 except that of Ghosh and Mandel.

(2) The arrangement of Fig. 1 may be modified by
blocking two pinholes, leaving only beams A and D, and
by replacing Ma and Mc by half-silvered mirrors Ma'
and Mc', which are moved upward and downward, re-
spectively, into beams A and D. The transmitted beams
from M B' and Mp' will then proceed respectively to MA

and MD to join at H~, exactly as in Fig. 1; and the
reAected beams from Mp' and Mc' will join at H2 at the
same location as in Fig. 1. The resulting arrangement is
essentially that proposed by Reid and Walls. ' We
disagree, however (as we shall argue in a later paper),
with their interpretation that "one does not have a quan-
tum superposition state as an original source. Quantum
interference eA'ects are provided by the beam spli-
tters. ""

(3) The arrangement of Fig. 1 can be modified by re-
moving the beam splitters H t and H2, the phase shifters
pl and pz, and the detectors Ui, L i, Uz, L2, and by plac-
ing miniature detectors at variable positions in the two
diamond-shaped regions Ri and R2 where beams inter-
sect. (Detailed views of Ri and R2 are presented in Fig.
3.) Ol and 02 are points in Ri and Rq, and ri and r2 are
position vectors from O~ and 02, respectively. Note that
in Fig. 3 the beam with wave vector kg is the reAection
of beam B from the mirror MB, the beam with wave vec-
tor kD is the reAection of beam A from the mirror MA,
etc. If ri and r2 fall in the respective regions Ri and R2
(where all the intersecting beams are described to good
approxiination by correlated plane waves), the two-
photon quantum state evolving from the state I ~) of Eq.
(2) has the Schrodinger form

@(rl,r2) —[exp(ikc r2)exp(ikA ri.)

+exp(i8)exp(ika r2) exp(ikD r i )], (10)

where an overall time-dependent phase factor has been
suppressed, and the relative phase factor exp(i0) de-
pends upon the detailed placement of the optical ele-
ments independently of ri and r2. By Eq. (10) the coin-
cident count rate of the miniature detectors located at
I'), I'2 1S

n(ri, r2) =constx {I+cos[K (rq —ri)+8]j,

0!X

1

I I

FIG. 2. A three-dimensional arrangement of four beams
selected from the output of a down-converting crystal S. The
diaphragm downstream from S is normal to the incident beam
direction I. The pinholes from which the beams A and D
emerge lie on a circle centered about I, and the pinholes from
which B and C emerge lie on another circle centered about I.
The plane AC intersects the plane BD along I. Beams A and
D and beams 8 and C are to be recombined.

FIG. 3. A detailed view of the regions Rl and R2 where the
beams of Fig. l intersect. OI and 02 are points in Rl and R2
which serve as origins for the position vectors rl and r2. The
beam-splitters, phase-shifters, and large-aperture detectors of
Fig. 1 have been removed, but miniature detectors (not shown)
are placed at rl and rq. The coincident count rate of the minia-
ture detectors as a function of rl and r2 is predicted by Eq.
(»).
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where

K =kg —kc =kA —kD.
If one focuses upon the miniature detector in Rl, disre-
garding the detector in R2, one finds its count rate to be
independent of r i

—no fringes; and likewise for the
detector in R2 by itself. Consequently, the fringe pattern
predicted by Eq. (11) is unequivocally a two-photon in-
terference phenomenon. Finally, we consider the result
of the following simplifications: eliminating two of the
pinholes (thereby making beams A and B coincident and
beams C and D coincident), and identifying Ma with

M~, Mc with MD, and Ol with 02. The resulting ar-
rangement, in which the regions R t and R2 of beam in-
tersection coincide, is that of the experiment performed
by Ghosh and Mandel. '

In a separate paper we shall examine in more detail
the role of entanglement in two-particle interferometry
and shall make some proposals for new nonpolarization
tests of Bell's inequality.
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