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Static Vacancies on a 2D Heisenberg Spin-1/2 Antiferromagnet
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We study static vacancies on a 2D Heisenberg spin- —, lattice at T=O, using linear spin-wave theory
(LSW) and exact diagonalization. Unexpectedly, quantum lluctuations are reduced on neighbors of an
isolated vacancy. Two vacancies are attractive, with lowest energy as nearest neighbors. We find LSW
to be surprisingly accurate relative to exact diagonalization, both done on a 4X4 lattice. However, LSW
on larger systems give substantial modification of the 4x4 results for binding and ground-state energies,
suggesting the need for larger lattices than previously suspected for reliable numerical estimates.

PACS numbers: 75.10.Jm, 75.30.Hx, 75.50.Ee

There are several reasons for studying the problem of
a static vacancy on a 2D Heisenberg square lattice with
an antiferromagnetic (AF) nearest-neighbor exchange.
In La2Cu04, the holes at the planar Cu sites form an AF
lattice with a Neel temperature of T~ —270 K. There
have been suggestions' that very small amounts of Sr in

La2Cu04 lead to almost localized holes in CuO2 planes.
Holes localized around planar copper ions might
effectively create static vacancies in the antiferromagnet-
ic lattice. The static-vacancy problem is, then, an impor-
tant limiting model for understanding the interaction of
mobile holes through the antiferromagnetic background.
Even more immediately related to this model are recent
experiments in which nonmagnetic Zn has been substi-
tuted for Cu to probe the magnetic interactions in

La2Cu04. Finally, the solution of the static-impurity
problem contributes to a more complete understanding
of quantum Heisenberg antiferromagnets in general.
For example, one might have thought that removing a
spin from a 2D AF lattice would enhance quantum Auc-

tuations at the sites next to the vacancy. However, the
2D Heisenberg Hamiltonian, as given by

H= —,
' JQS; S1

(ij )

= —,
' Jg[s;s;+ —,

' (s,-s,++s,'s,-)],
(ij )

with J & 0, has competing interactions in the sense that
the longitudinal terms enhance the staggered magnetiza-
tion (chosen to be in the z direction), while the trans-
verse terms suppress it. Hence, it is not clear which of
these predominates when a spin is removed.

In our analysis we employ a linear spin-wave (LSW)
theory, which uses a bosonic representation of the
spins. First, we calculate the exact ground-state proper-
ties of the impure infinite lattice within this representa-
tion. Concerned by the significant difference between
the LSW calculations on an infinite lattice and the exact
diagonalization results on a 4x4 lattice, we diagonalized

where a (a ) and b (b ) are magnon annihilation
(creation) operators, and the site indices i and j refer to
A (down) and 13 (up) sublattices, respectively. The lon-
gitudinal spin operators are, then,

(3)

For the LSW calculation on an infinite lattice it is con-
venient to introduce the following time-ordered Green's
functions:

G„(t)—= —t(T[b, (t)b,''(O)]&,

F;,(t)—:—t'&T[a t(t)b,t(O)]) .
(4)

The time Fourier transforms of the pure host Green's
functions obey the following equations:

Gp ( ) 1 g ik (r, —r,') co+J
N k o) —Ek +i6

(sa)

F~J (to) = ——g e'"""
N k m

2 —Ek2+i
(sb)

where the spin-wave energy is Ek =+' (J —ek) ', with
et, = —,

' J(cosk, +cosky). Here 1V is the number of sites
in a single sublattice and the sum over k is done for the

the LSW Hamiltonian for finite lattices. Surprisingly,
on a 4x4 lattice we found that the LSW ground-state
energy is very close to the exact value, in spite of the low
dimensionality and small lattice size, both of which make
LSW suspect. As the lattice size is enlarged, the binding
and the ground-state energies smoothly converge to those
of an infinite lattice, indicating that the finite-size effects
in small-cluster calculations might be very important.

In the simple LSW approximation the Heisenberg
Hamiltonian, Eq. (1), reduces to

H = —,
' Jg [——,

' + —,
' (a; a; + b~ b~ ) + —,

' (a; b~
—a;b, )],

(ij )
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TABLE I. Column 2: (Sj) as a function of the Manhattan
distance l= ix i+ iy i from the static vacancy on a 4x4 lat-
tice (where I (4). Column 3: A=E(2) —2E(1), the binding

energy (in units of J) of two static vacancies on a 4x 4 lattice.

TABLE II. Energetics of the 2D Heisenberg AF lattice with
static impurities. Here t. ;J- is the bare bond energy of a pure
lattice, E(1) and E(2) are the energy costs of a single and two
nearest-neighbor vacancies, respectively, and 4 =E(2) —2E(1)
is the binding energy.

0.2071
-0.1519

0.1831
—0.1491

—0.2822
0.0037

—0.1358
—0.0112

Exact (4x4)
LSW (4x4)
LSW (6x6)
LSW (8x8)
LSW (infinite)

0
&iJ

—0.1754
—0.1730
—0.1669
—0.1655
—0.1645

0.6743
0.6635
0.6166
0.6000
0.5776

1.0664
1.0686
1.0416
1.0336
1.0218

E(1) E(2)
—0.2822
—0.2584
—0.1915
—0.1664
—0.1333

tions (S;"Sg) are shown for a cluster of 40 sites around
the vacancy. We note that the suppression of the quan-
tum fluctuations is observed only for the spins next to the
vacancy, whereas on the average the quantum fluctua-
tions are enhanced.

The energy cost of removing one spin from an infinite
lattice is E(1)=0.5776J. This is calculated by neglect-
ing the vacancy effects outside the 40-site cluster. As the
position of the bond moves away from the vacancy, t. ;i,
the bond energy evaluated in the LSW approximation,
rapidly approaches its pure host value, which justifies the
neglect of energy changes beyond the finite cluster.
E(1) is less than the cost of losing four bonds, 4i e,i i

=0.6579J. The difference of 0.0803J is due to the fact
that the remaining spins have lowered their energy con-
siderably by readjustment of their correlations with their
neighbors. This change in the energy of the background
spins is less than e,i, the energy of a single bond in the
pure lattice; within the LSW approximation the dom-
inant term in the energetics of many vacancies will be
the number of bonds missing. We also find that
(S;„)=pl ((Sf) —(Sf)o) =0.4825 for l inside the cluster.
Thus, although (Sf) does not converge as rapidly as the
bond energy t. ;i, we nevertheless have most of the total
lattice spin deviation of 0.5 contained within the clus-
ter.

Table I shows exact diagonalization results on a 4x4
lattice with periodic boundary conditions. In column 2,
(Sf) is given for a single vacancy. We note that i(Sf) i

is greatest near the vacancy, which is in agreement with
the LSW calculation. The energy cost of a single vacan-
cy is 0.6743J, which is much higher than what we found
in the LSW calculation for an infinite lattice. To investi-
gate this point further, we diagonalized the full LSW
Hamiltonian on finite lattices with a Bogoliubov transfor-
mation. The results we obtained are given in Table II.
The cost of removing a single spin is in column 3. Note
that on a 4x4 lattice the LSW and the exact results
agree remarkably well, with the background spins lower-
ing their energy by about 4% of 4

i
e'~~j i, the cost of four

missing bonds. However, for larger lattices the back-
ground spins lower their correlation energy by up to 12%
of 4

i
ei~j i, resulting in a significantly lower ground-state

energy. We believe that the difference is due to finite-
size effects.

Next, we investigate the nature of the interaction be-
tween two static vacancies through the AF background.
The potential that represents two nearest-neighbor va-
cancies can be written as

4 7
y& i J g SB.SA i J g SA. SB

a=5

where a labels the sites 5, 6, and 7. We repeated the cal-
culations above, using V' rather than V. The resulting
site magnetization (Sf) and the nearest-neighbor trans-
verse correlations (S; Sj") for an infinite lattice will be
given elsewhere.

We find that the energy cost of two adjacent vacan-
cies, E(2), on an infinite lattice is 1.0218J, which is less
than twice the cost of a single vacancy. The binding en-

ergy is A=E(2) —2E(1)=—0.1333J. This is about a
factor of 2 smaller than what we found in the LSW and
exact diagonalization calculations on a 4x4 lattice, as
shown in Table II. Note that the binding energy h. is an
extremely sensitive function of the lattice size. Another
interesting result, as well as an internal check on the nu-
merical calculations, is that E(1) and E(2) vary linearly
with L, while

i e,i i
varies linearly with L, as the

length I.of an I.xL, lattice is changed. "
In conclusion, we have studied the problem of a static

vacancy on a 20 AF Heisenberg lattice both analytical-
ly, within the LSW approximation, and numerical-
ly. We found that at sites next to a single vacancy the
zero-point fluctuations are suppressed, leading to an
enhanced staggered magnetization. This enhancement
might be observable in a Knight-shift experiment in

La2Cui —,Znx04 or La2 —~Sr~Cu04 for small values of
y, where the holes are localized. We also studied the in-
teraction of two static vacancies and found an attractive
effective interaction when they are nearest neighbors.
Finally, we diagonalized the LSW Hamiltonian and
found a remarkable agreement between the LSW and
the exact results on a 4x4 lattice. However, LSW on
larger lattices yielded significantly different binding and
ground-state energies, suggesting that finite-size effects
in small-cluster calculations might be very important.

We have recently received a preprint by Nagaosa,
Hatsuga, and Imada, ' who studied the related problem
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of an extra spin coupled to an infinite 2D AF lattice
rather than a vacancy.
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