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Universal Critical Normal Sheet Resistance in Ultrathin Films
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A simple analysis is given to ultrathin-film systems. Based on the physical picture proposed that the
superconducting-insulating phase transition at T=O is a combined eAect of the pairing and localization
in two-dimensional systems, the normal-state sheet resistance is evaluated in the vicinity of the transi-
tion. It is found to be universal and equal to h/(2e), independent of the details of different samples as

observed in experiments. A similar formulation can also be used to explain the quantized conductance in

narrow channels.

PACS numbers: 74.75.+t, 73.50.Bk, 74.40.+k

Recent experiments have found many rich phenomena
in lower-dimensional systems. The most noticeable phe-
nomena, such as the quantum Hall eff'ect' and fractional
quantum Hall efI'ect' in two-dimensional electron sys-
tems under strong magnetic fields, the quantized conduc-
tance of narrow conducting channels, and the weak lo-
calization eA'ect in disordered two-dimensional systems,
have been fairly well understood. The experimental
studies of the superconducting transitions and the tem-
perature dependence of the sheet resistance in all kinds
of ultrathin films ' have revealed many interesting as-
pects of quantum fluctuations and dissipation, Coulomb
interaction eA'ects, and various phase transitions. '

Some aspects mentioned above have been extensively
studied theoretically. All these phenomena have to be
described in the language of quantum transport, fluctua-
tion, dissipation, or many-body correlation. Most of the
time, the phenomena are the combined results of several
quantum mechanisms and the key to understanding each
phenomenon is to isolate each contribution and to ana-
lyze it carefully. The study of weak localization in disor-
dered two-dimensional systems is a typical example.

A set of extremely interesting experiments' carried
out most recently on ultrathin bismuth films reveal some
fundamental aspects of ultrathin films which could not
be seen before on other systems because of the complexi-
ty of the data. The essential diAerence between Bi and
the materials studied experimentally before is that Bi
crystal samples are not superconductors. This excludes
the formation of coupled superconducting grains in the
Bi thin films with an average thickness around one
monolayer and indicates the difticulty of applying the
coupled-superconducting-grain model to Bi films. The
basic difference between the data of the temperature
dependence of the sheet resistance of the Bi films and
other well studied materials is that Bi data seem to indi-
cate that the onset of the superconductivity happens at
T=0, and with a normal-state sheet resistance R(T =0)
=R, with R, =h/(2e) and a clear bifurcation behavior
between the normal states in insulating and supercon-
ducting films. The data also suggest that the possible

sheet resistance at T=O can only have three values: 0,
~, or R, . The R, observed in Bi films is further evi-
dence that the onset of superconductivity in ultrathin
films is universally governed by the normal-state sheet
resistance. Since the superconducting grains are
strongly suppressed in Bi samples and R -T curves do not
show the effects of strongly coupled superconducting
grains, namely, local minima and flat tails at T=O with
all possible R(T=O), a more fundamental picture seems
to be necessary to account for the universal threshold in

ultrathin films. The idealized experimental curves for Bi
samples around the threshold are shown in Fig. 1 for il-
lustration.

The purpose of this Letter is to provide a more funda-
mental picture for the quantum phase transition between
insulating and superconducting states for the systems
like Bi ultrathin films and to evaluate the normal sheet
resistance for these systems in the vicinity of the quan-

R

FIG. 1. Idealized sheet-resistance —temperature curves in ul-
trathin films such as Bi samples. R, is the universal critical
sheet resistance with R, =it/(2e) . The units are arbitrary.
The critical point discussed in the text is indicated by a heavy
dot.
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turn phase transition from a quantum transport
theory. '" The analysis given here realizes that the ob-
served R, is another kind of quantized transport
coeKcient observed in a completely different kind of sys-
tem than the quantum Hall effect, fractional quantum
Hall effect, and the quantized conductance in inversion
layers or heterojunctions. More importantly, this critical
point separates the superconducting and insulating
phases at T =0 in the ultrathin films, and the transport-
ed charge is exactly 2e, which is fundamentally different
from the quantum Hall effect and quantized conduc-
tance effect where the transported charge is e, or the
fractional quantum Hall effect where the transported
charges are fractional-charge excitations. The R, is
found to be equal to h/4e exactly and independent of
any detail of a specific sample, such as, the size, the de-
gree of disorder, the electron density, and the coherence
length of the sample.

The basic idea is that for the samples like Bi thin
films, there are no superconducting grains (more precise-
ly the number of superconducting grains is minimized).
So the effect of the coupling between superconducting
grains can be ignored or taken as a secondary eff'ect.
However, this effect may cover up other effects when the
coupled superconducting grains are largely present as
apparently happens in other materials. The coupled-
superconducting-grain model has accounted well for
many aspects when coupled superconducting grains are
present. If there is a way to suppress the superconduct-
ing grains in other materials, the conclusions from the
present work should be observed in those systems too.
One might like to consider changing the external condi-
tions or internal parameters of other materials in order
to achieve the suppression.

The physical picture can be viewed as follows. When
the localization length l(e) for a single electron state
with energy t.. is much smaller than the average Cooper-
pair size or the coherence length of the superconducting
state, Cooper pairs cannot form because electrons see
each other as localized particles on the scale of the
coherence length. Therefore, the systems are in the insu-

lating state at T=O based on the scaling theory of locali-
zation which shows that all single-particle states in

disordered two-dimensional systems are localized. How-
ever, when l(e) is much larger than the average size of a
Cooper pair, the electrons see each other as extended
particles on the scale of the coherence length, and there-
fore, the Alms are in the superconducting state at T=O.
This is the exact result of Ma and Lee' on the criterion
for disordered superconductors with the transition at
l, =g, where g is the superconducting coherence length.
The single-particle excitations of the superconducting
ground state in two-dimensional systems are localized
too, since the single-particle states are always localized
for disordered samples with infinite size except that the
excitations are created within the localization length of
the boundary of the samples.

Let us take the samples as squares with side length L
for convenience and imagine the circuit is closed by leads
outside the sample. Consider that all electrons are in lo-
calized states and all states below the Fermi level are oc-
cupied. The qualitative picture of the single-particle en-

ergy levels is that the energy levels are discrete and the
separation between two levels decreases with increasing
energy. The localization length of each energy level in-
creases with increasing energy. The localization length
at the Fermi level is the largest one of the occupied
states if we consider the case at T=O. Now assume that
the situation is such that the localization length at the
Fermi level l(eF) is equal to the critical localization
length Jt, which allows the Cooper instability and the two
electrons on the first level form a Cooper pair or vice ver-
sa. Another way to think of it is to assume that the
energy-level structure and the localization length l(e) do
not change when the electron density is changing and so
is the Fermi level. Let us increase the electron density
from the insulating side until eF reaches eF with l(eF)
=l, . Then when t..F & ep, the system is superconducting
and when eF & t..F, the system is insulating. This is in

some sense similar to the quantum phase transition in

disordered boson systems. ' The difference is that there
is a marginal metallic state in the vicinity of the transi-
tion in the ultrathin-Alm systems. The experimental
data of Bi samples seem to suggest that three states are
possible at eF =eF and T=O. If one had a sample with
t.F=t.F' to measure the sheet resistance at T=O, one
would obtain three values: R(T=O) =0, ~, or R, . Let
us assume that at time t ~, two electrons at the Fermi lev-

el t. F are in the pairing state and at a later time t2 they
are in the localized single-particle state. If the sheet
resistance were measured at t~, one would obtain R=O
and if it were measured at t2, one would obtain R =~.
A third state, the marginal normal state, corresponds to
the pair developing into a single-particle state at the edge
of the sample (two edges are the same with the periodic
boundary condition). The probability to observe R=R,
is about 1,/L for eF=EF' and T=O. This situation is

similar to the ordinary superconducting-normal-metal
transition. When T=—T„both superconducting and nor-
mal states are possible. If one did measurements on the
resistance, the resistance would Auctuate between zero
and the normal resistance at T, . Now let us try to evalu-
ate R, by assuming the following conditions: An exter-
nal voltage is applied to the sample and at the time to the
normal state is realized from the pairing state when the
only pair developing into the single-particle state is at
the boundary. The two e1ectrons from that marginally
stable pair will keep moving together ballistically after-
wards because the distance to cross the external voltage
is practically zero now.

Based on the above argument, we can define a normal
current density at to under the assumed condition that
only the two electrons from the marginally stable pair
are transported together through the sample. The nor-

2177



VOLUME 62, NUMBER 18 PHYSICAL REVIEW LETTERS 1 MAY 1989

1 Be(n)
S Bk„(n) ' (2)

where e(n) is the energy level of state n and k, (n) is the
quasi-wave-vector of the state n. Using periodic bound-
ary conditions in the x direction and a ballistic assump-
tion for the last-moment motion of two electrons in the
marginally stable pair, we have

k, (n) =2~n/L . (3)

Using the condition given above, one easily obtains

2e g Be(n)
hL Bn

In the case of the quantum Hall effect "'
~„Be(n)/Bn was averaged over one flux quantum, with

~„Be(n)/Bn = —eV under the external voltage V.

Here we are dealing with two electrons developed from a
marginally stable pair and the ~„Be(n)/Bn should be
averaged over this pair. Therefore, ~„B (ne)/Bn
= —2e V and the current density is

J =(2e/hL)2eV . (s)

One special feature which needs to be clarified im-
mediately here is that the factor 2 associated with the
charge strength is actually the residue effect of the mar-
ginally stable pair. The summation on n is actually con-
verted into an integral of an energy dispersion under the
applied voltage and one may wish to view the process as
a process to transport a —2e charge ballistically through
a voltage V.

The quantized conductance observed in the ballistic
narrow channels in inversion layers can also be simply
explained by the above formulation, if we take the spin
index into account, sum up all ballistic states, and take
the energy shift as eV. However, the underlying physics
here is diff'erent and the corrections due to the quantum
interference effect may need to be taken into account for
some special geometries.

Now we can easily obtain the critical normal-state
sheet resistance of the ultrathin films in the vicinity of
the superconducting-insulating transition at T=0,

W, = l/~ =E,/J„= h/(2e) ',
which is universal for all ultrathin films as long as the
two-dimensional assumption is still valid.

If a system has a normal resistance R larger than R,
when T approaches zero, the localized single-particle

mal current density of these two special electrons is given

by

J = —2egf„V „/L

where e is the electron charge strength, f„ is the occupa-
tion number at state n participating in the conduction,
and V „ is the group velocity of the state in the x direc-
tion and is given by

state is more stable, and the system approaches the insu-
lating phase at T=O. If a system has a normal resis-
tance R smaller than R, when T approaches zero, the
pairing state is more stable, and the system approaches
the superconducting phase. If a system has a normal
resistance that goes to R, exactly when T approaches
zero, the system can be superconducting, insulating, or
normal at T=O.

The critical normal sheet resistance can also be argued
from a macroscopic point of view ' analogous to
Laughlin's argument' for the quantum Hall eff'ect if one
accepts the physical picture proposed above that the nor-
mal state at the critical point corresponds to the system
with eF =t.F when the marginally stable pair develops
into the single-particle state at the edge of the sample.
Imagine that the sample is connected into a loop. The
current in the loop is given by I=cAU/Ap. AU is the
change of the total electric energy in the system and hp
is the change of the magnetic Aux through the loop. h, U
is 2e V as argued above and Ap is hc/2e because only one
marginally stable pair existed and has developed into the
normal state. Then one can obtain R, =h/(2e) im-
mediately.

Now let us simply analyze the inAuence of finite tem-
perature, the Coulomb interaction, and the quantum
fluctuation from one superconducting grain to another
when coupled superconducting grains are presented.

Generally speaking, a finite-temperature analysis using
the renormalization group should show Aows to two
stable fixed points at T=O, R =0 and ~, and Aows away
from the unstable fixed point at R =R, and T=O.

The Auctuation effect due to the formation of local su-
perconducting islands will introduce some rich phenome-
na. However, since the discussion of the universal criti-
cal normal sheet resistance given above does not depend
on the quantum Auctuation from one superconducting
grain to another, the conclusion is still true even when
superconducting grains are formed in the systems. Now
the question is how one can suppress the super-
conducting-grain effects in the systems where supercon-
ducting grains can form easily. Ultrathin Bi films are
very good examples where the superconducting-grain
eff'ects are minimized because Bi crystal samples are not
superconductors.

The Coulomb interaction will introduce some other in-
teresting features to the systems. An issue such as how
the disorder, crystallization in the grains, and the
Coulomb interaction inAuence the behavior of the Coop-
er pairs is still not very clear. However, for the normal
state, the Coulomb interaction may only renormalize the
effective mass of the quasiparticles. Therefore, it is like-
ly that the Coulomb interaction in such a sense will not
inAuence the universal critical normal sheet resistance
discussed above.

In summary, the normal sheet resistance of ultrathin
films in the vicinity of the superconducting-insulating
phase transition has been analyzed and evaluated. This
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critical sheet resistance is found to be universal and
equal to lt/(2e), independent of any detail of a specific
sample. Based on the analysis, it has been realized that
the universal critical sheet resistance indicated in the ex-
periments is another kind of quantized transport co-
efficient. This quantized transport coefficient happens in

a completely diA'erent kind of system, ultrathin films.
Other quantized transport coefficients like the quantum
Hall eAect and quantized conductance are all observed
in inversion layers or heterojunctions of semiconductors.
More importantly, this critical point separates the insu-

lating and superconducting phases for all ultrathin su-

perconducting films. The analysis provided here also
brings up a challenge to experimentalists, namely, to
what degree the experiments can suppress the coupled-
superconducting-grain effects and how close the experi-
ments can approach the universal critical normal sheet
resistance in ultrathin-film systems.
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