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Experimental Probing of Quantum-Well Eigenstates

Jean-Yves Marzin and Jean-Michel Gérard

Laboratoire de Bagneux, Centre National d’Etudes des Telecommunications, 92220 Bagneux, France
(Received 29 November 1988)

We measured the spatial variation of the probability densities in the first few electron states of a
GaAs/Al,Ga -xAs quantum well. This result was obtained from the optical determination of the ener-
gies of the bound states as a function of the position of a highly localized perturbation, consisting of one
isoelectronic substituted cation plane containing either indium (attractive potential) or aluminum
(repulsive potential). A series of samples was prepared, each with the probe plane in a different position,

scanning thus the whole width of the quantum wells.

PACS numbers: 73.60.Br, 03.65.—w, 71.50.+t, 78.55.Cr

Probing local structural or electronic properties of
solids remains an experimental challenge. One powerful
approach is to incorporate and test built-in localized
probes, such as isoelectronic (or deep-level) substituted
impurities, which create a short-range potential. In par-
ticular, the optical study of the GaAs,P; -, semiconduc-
tors doped with N or Cu yielded an insight into the local
arrangement of atoms around the impurity and thus into
the alloy disorder in these materials.!*> Au planes were
also used to probe the penetration depth of a surface
state in Ag(111),3 and deep-level impurities to predict
the band lineups in semiconductor heterojunctions. *¢

In this Letter, we extend for the first time this ap-
proach to the use of a planar isoelectronic perturbation
to measure the spatial dependence of the probability den-
sity associated with a discrete set of eigenstates. We es-
tablish the validity of this technique in the case of a
GaAs-Al,Ga; -, As semiconductor quantum well, for the
first bound electron levels. Despite the fact that it may
be used in a large number of multilayered structures,
this method is indeed well suited for semiconductor
quantum wells in which the electron and hole densities
(averaged over a constituent bulk material unit cell) are
spatially modulated along one direction (the growth axis
z). Finally, with molecular-beam epitaxy, samples con-
taining very thin layers (such as short-period’ superlat-
tices and “delta-doped” heterostructures®) can be grown.
In our experiment, this high degree of control allowed
the insertion of one-monolayer-thick planar probes in the
studied structure, during its growth process. Two substi-
tuting species, yielding either a repulsive or an attractive
potential, have been successfully used in two independent
series of experiments.

The electronic properties of quantum wells are well
described by effective-mass models. In this framework,
the eigenstates in a quantum well structure correspond to
wave functions ¥/ (x,y,z) given by

Yk, k, (X,,2) =F,"(z)eik*xeikyyu8(x,y,z) . 1)

ug, assumed to be identical in the two constitutive bulk
materials, is the zone-center Bloch eigenfunction for the
band n (conduction or valence). F7(z) is the envelope
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function for the ith bound state corresponding to band n
and is an eigenfunction of the one-dimensional Hamil-
tonian

Ho=PX2m*+Vv"(z), )
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FIG. 1. Typical photoluminescence excitation (full line) and
modulated reflectivity (dashed line) spectra obtained for (a)
the indium plane at the center of the well (series A); (b) the
reference sample; and (c) the aluminum plane at the center of
the well (series B). For more clarity, the modulated spectra
have been indicated only in the high-energy range. The e;-hh;
transition energy is obtained either from the photolumines-
cence energy or modulated reflectivity. Inset: Schematic of
the expected envelope wave functions for the first electron and
hole levels.
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where V"(z) is a square potential describing the z depen-
dence of the nth band edge in the structure. The eigen-
states of (2) are labeled e;, hh;, and lh; (of energies Ef,
EM™ and E/™), respectively, for electron, heavy-hole, and
light-hole bands. The expected envelope wave functions
for the first confined levels are shown schematically in
the inset of Fig. 1. |F['(zo)|? is a slowly varying func-
tion on the scale a, of the bulk lattice parameter, hereaf-
ter referred to as the probability density envelope
(PDE), and is the probability density averaged over a
slab of width a, around z =z,. Approximate values for
the PDE’s can be obtained, as will be discussed later, if a
localized perturbation is inserted in the structure and its
position varied from sample to sample. For the
GaAs/AlGaAs quantum wells we studied, the perturba-
tion consisted of the isoelectronic substitution of a (100)
cation plane, either by In (attractive potential) or by Al
(repulsive potential).

The samples were grown by molecular-beam epitaxy
on GaAs(100) substrates. They consist of multi-
quantum-well structures with six GaAs wells, each 160
A wide, separated by 85-A Alg,9Gag71As barriers. In a
first series (A) of samples, one indium monolayer was in-
serted in each period and its location varied from sample
to sample. In eight samples, we probe the first grown
half of the (symmetric) GaAs well. In one additional
sample, the In plane is located in its second half. The
last sample was a reference sample without In. In a
second series (B) of samples, aluminum was inserted in-
stead of indium, and six samples (including a reference
one) were fabricated.

The low-temperature (10 K) optical transition ener-
gies were determined both from photoluminescence exci-
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FIG. 2. Experimental transition energies obtained at 10 K,
as functions of the position of the isoelectronic plane, (a) for
series A (In plane) and (b) for series B (Al plane). ®, e,-hhy;
0, e;-lh;; @, ez-hhy; O, ex-lhy; @, e3-hhs; and A, es-hhs. The
transitions energies plotted at —40 and 200 A (far in barrier)
are those of the reference samples. While they are also ob-
served (Fig. 1), transitions e|-hhs are not indicated.

tation spectroscopy (where the emission intensity at a
given wavelength is recorded as a function of the scanned
excitation wavelength) and from wavelength-modulated
reflectivity. Figure 1 shows typical spectra displayed
here for the reference sample and the samples with the
isoelectronic plane situated at the center of the well for
series A and B. The transitions observed for the refer-
ence sample are assigned to e;-hh; and e;-lh; from their
energies calculated with a simple effective-mass-type
model.® The nature of the transitions for the “per-
turbed” samples can be deduced by continuity from sam-
ple to sample without ambiguity.

Figure 2 shows the energies of these various transi-
tions as functions of the position zg of the electronic
plane for the two series of samples. The energy varia-
tions (tens of meV) are large compared with the experi-
mental errors (1 meV). They are, as expected, of oppo-
site sign in series A and B and qualitatively reflect the
shapes of the PDE’s in the unperturbed quantum well.
Assuming a perturbation W¢§(z —z¢) for the electrons
and WM s(z —z¢) for the heavy (light) holes, the
first-order zo dependence of the e;-hh; (—1h;) transition
energy is given by

AEZ"(ei -hhi (_lh,))

=We|Felzo) |2+ Wi (0 | phh Doy 120 (3)
Since the unperturbed envelope wave functions are not
very different for e; and hh;, the transition energies
roughly map the corresponding PDE in both e; and hh;
levels across the structure (in particular, the number and
location of nodes for different values of /). Nevertheless,
this first-order description is not sufficient to extract
quantitatively the PDE’s, because the localized potential
mixes different quantum-well states.

To go further, consider the one-dimensional Hamil-
tonian Ho of Eq. (2), having a series of eigenfunctions
F;(z) with discrete energies E;, and a localized perturba-
tion W &(z —zo). The eigenenergies E;° of the perturbed
Hamiltonian H,=Ho+ W 6(z —z,) either keep the un-
perturbed value E; if F;(z9) =0 (i.e., if the probe plane is
located at a node of the PDE), or satisfy the (infinite)
set of equations

i |Fiz)|? 1
=\ Ef*-g; W
E;=E;°
In principle, the PDE’s, |F;(z¢)|? can be extracted
from the E; and E;° values using (4).

A finite set (j < p), corresponding to the lowest ener-
gy levels, is accessible experimentally so that only ap-
proximate values p;(zo) for the PDE’s can be obtained.
The first p equations of system (4) are considered under
the form

jip IFj(Z())‘z i

- |F,,,(Zo)|2

1 _ 1
Jj=1 E,’ZO_EI' w m*p‘tl Eizo_Em Wi
Ej=E[° En=E;°

4)

(5)
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The right-hand sides of Egs. (5), 1/W;, depend a
priori on zg and i, and include the correction to the per-
turbation potential due to the remote levels. The sim-
plest approximation is to take them as independent of z.
The corresponding errors on the p;’s will be discussed
later in the specific case of a quantum well.

If all the E;° are different from the E;’s, the inversion
of system (5) yields directly p;, for i varying from 1 to p,
as a function of the W;’s. This procedure is repeated at a
series of zo. The normalization conditions (in our
specific case on one period of the superlattice) for the
pi’s can be approximated by discrete sums over the sam-
pled values:

20=2p

Y pi(2)az=1. 6)

20T 2q

The p conditions (6) allow elimination of the W;’s. The
above procedure can be used regardless of the sign and
strength of the potential W.

Experimentally, the resolution of this method is limit-
ed by several factors: the finite spatial extension of the
perturbing potential, the spacing between the sampled zg
(here 10 A), and finally the energy range where the lev-
els are determined. The latter point leads to a cutoff fre-
quency, a priori unknown and system dependent. It lim-
its the resolution to about d/Nrzx for a quantum well
when the NV first levels are considered (15 A in our case).

To proceed to the quantitative analysis of our experi-
mental data, it is necessary to extract the energy
differences, which appear in Eq. (5), from the transition
energies:

E(e;-hh;) =E,+Ef+EM—E®(e;,hh;), (7

where E, is the GaAs band gap, and E “*(e;,hh;) is the
e;-hh; exciton binding energy. We make two further as-
sumptions for that last step. First, we assume that the
energies E{" and EY are the same in all structures, and
equal to those in the reference sample. This is reason-
able since the valence-band discontinuities between InAs
(or AlAs) and GaAs are smaller than the conduction-
band ones (W" and W™ smaller than W¢), and the

effective masses for the light holes are rather low. This
assumption is more accurate in the case of InAs since
light holes are only slightly bound by an InAs monolayer
inserted in a GaAs matrix.!® The second assumption is
to take as binding energies for all e;-hh; (respectively,
ei-1h;) excitons, and for all samples, those obtained ex-
perimentally in Ref. 11, for a sample similar to the refer-
ence sample; ie., E=6.5 meV (9 meV). For e;-hh;
excitons, with i#j, we take the binding energies equal to
zero. Ef and E}" can then be deduced from the observed
transitions (e;-hh;, e;-lh;, for 1 <i=<23, and e;-hhj3).
We took the symmetry of the quantum well into account
in the normalizing conditions (6).

The results are not very sensitive to the values of E fp
and EM, If they are assumed to be the same in all sam-
ples, they only enter the calculation via the energy
difference EY —E". This quantity can be obtained ex-
perimentally in the most asymmetric samples where an
additional e,-lh; transition is observed. Our analysis
then does not rely on a particular model to extract the
electron energy levels, but on the correct assignment of
the observed transitions.

Figure 3 shows the PDE’s for the first three electron
levels deduced from the experimental data independently
for the two series of samples, together with the calculat-
ed effective-mass values. The indicated error bars in-
clude the errors on the determination of the transitions
energies, exciton binding energies, and light-hole con-
finement energies and are indicated up to 3 standard de-
viations. The increasing error bars for pi, p,, and p; are
due to a decreasing experimental precision for Ef, ES,
and E$. It should be noted that the uncertainty in the
sample parameters (which is difficult to estimate) was
not taken into account in these error bars. The overall
agreement is very good for both series, confirming that
both types of perturbations can be used.

While, in principle, the heavy-hole wave functions can
be determined from the same set of data, the precision
for the p’s is much poorer in this case because of the
smaller energy variations of the heavy-hole levels due to
the perturbation.

Finally, the zo dependence of the 1/W; of Eq. (4) can
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. EIG. 3. Experimental PDE’s p for (a) ey, (b) ez, and (c) e3, compared to the theoretical effective-mass result. Dots and triangles
indicate experimental results obtained on series A and B, respectively.
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be estimated for the case of a quantum well with infinite
barriers. This provides an upper limit on their fluctua-
tions around a mean value, resulting in an error for the
pi’s which is much smaller than our experimental error.

The oscillator strengths of the transitions are also
dependent on the location of the isoelectronic plane:
Isoelectronic doping is one way to efficiently break the
symmetry of the quantum wells, as confirmed by the ob-
servation of certain parity-forbidden transitions only in
the most asymmetric samples. The exploitation of these
features, and the discussion of additional information
that can be obtained from our data, e.g., strength of the
perturbative potential, are out of the scope of this Letter,
and will appear elsewhere.

Beyond yielding satisfying results in this simple case,
our technique can be useful in layered systems where
there may be a doubt in the spatial probability distribu-
tion in a given electronic state. This can occur in semi-
conductor superlattices which can be of “type 2,”!'? the
first electron states being then mostly confined in one
material and the hole states in the other. The introduc-
tion of an isoelectronic probe in one or the other of the
two constituents and optical studies of the perturbed and
unperturbed structures should prove unambiguously the
occurrence of this situation.
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