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A model self-energy correction to the local-density approximation is derived from the GR' approxima-
tion of the self-energy operator. Excitation energies calculated in diamond, Si, Ge, GaAs, and AlAs
compare favorably with those obtained with the full GR'approximation. Results for GaP are close to ex-
perimental data. It is shown that the model consists of a "scissor" operator and additional nonrigid
corrections.
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The local-density approximation (LDA) is a powerful
approach for the description of ground-state properties
of solids. ' The eigenvalues of the Kohn-Sham equa-
tions, however, do not in general compare well with ex-
perimental excitation energies; the fundamental gap of
nonmetals being typically underestimated by 50% to
100Vo. Excitation energies of many-electron systems can
be derived in the context of many-body perturbation
theory from the one-particle Green's function, which can
be obtained by solving Dyson s equation. In this spirit,
Hybertsen and Louie and Godby, Schliiter, and Sham
have recently calculated accurate quasiparticle energies
in semiconductors and insulators using the GR'approxi-
mation of Hedin. These quasiparticle energies were ob-
tained by subtracting from the Kohn-Sham eigenvalues
the LDA self-energy and replacing it with the expecta-
tion value of the GR' self-energy operator. Considering
the complexity of a full 68'calculation and the simplici-
ty of the LDA, it seems desirable (i) to understand the
origin of the difference between the LDA and GW ap-
proximations in nonmetals, (ii) to derive the correction
to be added to the LDA in order to recover the GR' re-
sults, and (iii) to examine whether such a correction can
be expressed in a simple form.

In this work, we analyze the GW self-energy operator
in a semiconductor and separate it into a short-range
part, which, following Kohn and Sham can be approxi-
mated by a local exchange-correlation potential, and a
correction which results from incomplete screening of the
Coulomb interaction. This correction is calculated in
diamond, Si, Ge, GaAs, and A1As. When added to LDA
eigenvalues, it reproduces the essential features of the
quasiparticle energies obtained in the 68' approxima-
tion. ' We also show that the self-energy correction can
be decomposed into a "scissor" operator and additional
terms giving rise to nonrigid shifts of the eigenvalues.

We start from the GR' expression of the self-energy
operator

Z (r, r';E) =i G(r, r';E+E')W(r, r';E')dE', (1)

Z (r, r';E) =i G(r, r';E+E') W' (r, r';E')dE'

+i G(r, r';E+E')SW(r, r';E')dE'. (2)

The first term on the right-hand side (rhs) of Eq. (2) is
the self-energy operator of a metallic inhomogeneous
electron gas which has been analyzed by Sham and
Kohn. They showed that it is short ranged and depends
only on the charge density in the vicinity of r and r', and
can therefore be approximated by a local, energy-
dependent potential. Accordingly,

Z (r, r';E) =pxc(r, E)B(r—r')

+i „G(r,r';E+E')BW(r, r';E')dE'. (3)

Calculations of quasiparticle energies including the first
term on the rhs of Eq. (3) have been carried out by
Wang and Pickett, who found that the inclusion of the
energy dependence of the exchange-correlation potential
only leads to small improvements over the eigenvalues
obtained with an energy-independent LDA potential. In
what follows, we will assume that the energy dependence
of the local exchange-correlation potential can be
neglected for states close to the Fermi level, so that
pxc(r, E) can be replaced by its value at the Fermi level,

where G(r, r';E) is the one-particle Green's function and
W(r, r';E) is the eA'ective interaction potential which in-
cludes the effects of local fields and dynamical correla-
tions. In metals, W(r, r';E) decreases rapidly as
ir —r'i ) 1/kTF, where kTF is the Thomas-Fermi wave

vector, whereas in semiconductors it decreases as
I/eo i r —r'i for large

i
r —r'

i because of the finite value
of the high-frequency dielectric constant eo. In view of
this qualitative difference, we write

W(r, r';E) =W' (r, r';E)+6W(r, r';E),
where 8" is the short-range effective interaction po-
tential of a metallic inhornogeneous electron gas and 68'
has the same long-range behavior as W, so that
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Bz(r, r') = —p(r, r')BW(
I r —r'I )+~EcH, (4)

LDA( ) 7

We now derive an approximation of the last term on
the rhs of Eq. (2), which we denote by bZ. This term
contains a long-range part because of the slow decrease
of BW and cannot be reduced to a local operator. Little
is known about SW(r, r';E) apart from its asymptotic be-
havior as r r' and as I r —r'

I
~. First, we expect

6W to be small in the limit r r', since the short-
distance screening properties of a semiconductor are the
same as those of a metal having a similar density distri-
bution. On the other hand, BW= I/eo I

r —r'
I as

I
r —r'I ~. We further make the assumption that

BW(r, r';E) only depends on I r —r'I. This is strictly val-
id only as Ir —r'I ~, but calculations show that in

non metals, local-field effects become negligible as
Ir —r'I exceeds the interatomic distance. The energy

dependence of BW is assumed to be dominated by a
plasmon-pole structure around the plasmon frequency
co~. Since we consider excitation energies much smaller
than co~, BZ reduces to a static Coulomb-hole plus
screened-exchange (COHSEX) contribution. It must be
noted that this last assumption on 8Z is much less res-
trictive than making the same approximation for the
whole self-energy operator (COHSEX approximation).
The correction is therefore

0.3 I I I I I I I I I I

g' 0.2
7Z

I

V'
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0.0
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FIG. 1. Dilference esc'(q, q;0) —e~ '(q, 0) used in the
definition of 6W(q). The solid line shows the numerical fit
used in the calculations.

where p(r, r') is the Dirac density matrix and

n
BEcH=, d'q 8'W(q)22' '" (5)

is the Coulomb-hole contribution, which in this case
shifts all quasiparticle energies by the same amount
without affecting the excitation energies.

The expectation value of the correction in a Bloch
state n, k is

~&.,k=«, k
I

&& In, k&= —Z 2 I «,k I
e"" '+ "Int, q& I

'&W« —q+G)+&EcH,
m, q G

(6)

where m, q denote occupied states, 6 is a reciprocal-
lattice vector, and

4 2

~W(q) =
z [esc'(q, q;ru =o) —em '(q, ro =o)j, (7)

Qq

where esc'(q, q;0) is the diagonal part of the inverse
dielectric matrix of the semiconductor calculated in the
random-phase approximation, and e~ (q, 0) is the in-
verse of the static Lindhard dielectric function of a
homogeneous electron gas. The function esc'(q, q;0)
used in our calculations was obtained using the empirical
pseudopotential method, as described in Refs. 9 and 10.
Figure 1 shows the difference esc'(q, q;co=0) —e~'(q,
ro =0) calculated for various values of q as well as a nu-
merical fit used in our calculation of BZ„|,. Calculations
done with various models of esc'(q, q;ru =0) —e~'(q, ru

=0) have shown that the resulting 6Z„ l, is not sensitive
to the details of this function. The Bloch functions and
eigenvalues used in the evaluation of Eq. (6) were ob-
tained with the LDA ab initio norm-conserving pseudo-
potential method, " using the Ceperley-Alder function-
al. ' The wave functions are expanded in plane waves
with an energy cutoff of 50 Ry for diamond and 18 Ry
for all other semiconductors. The divergence of BW(k
—q+G), appearing in Eq. (6) as Ik —q+GI 0, is
treated with the technique described in Ref. 13, and two

special points are used in the Brillouin-zone integration.
In Table I, we give the resulting self-energy correc-

tions (BZ) for all semiconductors for which GW results
are available —i.e., diamond, Si, Ge, GaAs, and AIAs
(Ref. 14)—and also for GaP. The differences between
GW quasiparticle energies and LDA eigenvalues
(e —c ") are also given in Table I.

In general, the self-energy corrections BZ and the dif-
ferences e ~—e" agree within 0.2 eV. Larger devia-
tions (0.3-0.4 eV) occur for the X4,, ~A'1, gap in dia-
mond and the 125,, I 2, gaps in Ge. We also give the
LDA eigenvalues (e" ), the experimental excitation
energies (e'"~'), as well as the corrected LDA eigenval-
ues (e" A+6K) for comparison. It should be noted that
these latter values depend on the LDA eigenvalues,
which can vary up to 0.2 eV depending on the details of
the LDA computation (choice of atomic pseudopoten-
tials, of energy cutoffs, and of exchange-correlation func-
tionals). For example, the I 2, and L~, states in Ge, as
well as the I &, state in GaAs, are particularly sensitive to
the energy cutoff used in the plane-wave expansion. ' A
detailed comparison of the self-energy correction with
the difference e —e (Ref. 3) for silicon is given in
Fig. 2. The correction proposed in this work follows
closely the difference between GW and LDA results, thus
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TABLE I. Self-energy corrections in various semiconductors as obtained with Eq. (6) (6Z),
compared to the diAerence between GW quasiparticle energies and LDA eigenvalues
(e —e ). The LDA eigenvalues (e"n"), the corrected LDA eigenvalues (e" +8K), and
the experimental excitation energies are also given for comparison. All values are given in eV
and measured with respect to the valence-band maximum. Experimental values are taken from
Refs. 3, 4, and 15 with spin-orbit eA'ects removed.

GW LDA LDA ~LDA+pg expt

Diamond
1 is, c

+4t, Xl,
L i,c

Eg

Si
1 I 5,c

Xl,
L i,c

Eg

2.01
2.29
2. 10
2.06

0.66
0.69
0.64
0.68

2.0
1.87

1.7

0.78
0.74
0.76
0.77

5.50
10.44
8.00
3.48

2.55
0.64
1.46
0.50

7.51
12.73
10.10
5.54

3.21
1.33
2.10
1.18

7.3
12.5

5.48

3.4
1.3

2.1,2.4+' 0.15
1.17

12,e

+l,c

L I,c

GaAs
r, ,
XI,
L i,c

AlAs
rl,
A'I,
L i,c

Gap
r, ,
Xl,
L i,e

0.46
0.65
0.55

0.74
0.93
0.81

0.92
1.03
0.92

1.07
1.17
1.08

0.78

0.68

0.91
0.70
0.79

0.97
0.81
0.90

—0.09
0.69
0.10

0.48
1.40
0.97

1.87
1.35
2.03

1.94
1.63
1.72

0.37
1.34
0.65

1.22
2.33
1.78

2.79
2.38
2.95

3.01
2.80
2.80

0.99
1.4+ 0.2
0.84

1.63
2.09,2.12
1.92, 1.94

3. 1 1

2.24
2.49,2.54

2.89
2.35

2.67,2.87

indicating that expression (4) is an essential contribution to the self-energy of nonmetals which is missing in the LDA.
The Coulomb-hole contribution BEcH, which must be added to both occupied and empty states, is positive and cancels
approximately the effect of the screened exchange term in the valence bands. Consequently, the net effect of the self-
energy correction is to shift the conduction bands upwards and leave the valence bands practically unchanged.

In order to clarify further the nature of the self-energy correction, we now decompose it into a scissor operator, simi-
lar to that proposed on empirical grounds by Baraff and Schluter, plus nonrigid corrections to the LDA eigenvalues.
Considering Eq. (6), we see that the dominant terms in the sums are those with G=O and ik —qi small. Retaining
only these terms, which is valid when 88'has only small-q components, we get the scissor operator

BE~H, n F conduction band,
6'Z„ l, = t kaz

+8W(q)+8EcH= 4trq 88'(q)dq+BEcH, n c valence band,
(2tr)' "o

(8)

where we have replaced the summation over q by an integration over a sphere of radius kBz having the same volume as
the Brillouin zone. The width of the scissor operator (8) calculated in this way is 0.8 eV for silicon. This value is com-
parable to the average of the self-energy corrections to the smallest gaps in this material (see Table I).

To summarize, we have proposed a self-energy correction to the LDA which takes into account the effects of incom-
plete screening in nonmetals. This self-energy correction calculated in various semiconductors follows closely the
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band-structure calculations.
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difference between G8' quasiparticle energies and LDA
eigenvalues. The accuracy of the model is limited by the
neglect of local-field effects and dynamic screening. The
self-energy correction also contains as a dominant term a
scissor operator whose width can be estimated without
adjustable parameters, and can be useful as a first step in

FIG. 2. Self-energy corrections BX, obtained in this work for
silicon (dots), compared to the difference eG —eLo" (open
symbols). Open circles: Both e and e" taken from Ref. 3.
Open squares: e from Ref. 3 and e from our calcula-
tions, when Ref. 3 does not give an LDA value. All values are
in eV and refer to the valence-band maximum.
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