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Scaling Exponents in Nonisotropic Convective Turbulence
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A dynamical theory for the structure functions in convective turbulence at high Rayleigh numbers is

presented. A range of scales is identified in which buoyancy forces dominate and the scaling exponents
diAer significantly from isotropic turbulence. A crossover to Kolmogorov-type scaling is predicted as a
function of the Rayleigh number.

PACS numbers: 47.25.—c

This Letter is motivated by recent experiments' on
turbulent motion in convective cells at very high Ray-
leigh numbers (currently as high as R —10' ). There
are preliminary indications that in this type of tur-
bulence there exists scaling behavior, but the exponents
characterizing the scaling of correlations functions are
not the usual ones obtained for isotropic turbulence.

Denoting by u and T the velocity and temperature
fields, respectively, one considers the r dependence of
correlation functions such as

dent driving of turbulence causing a fundamental depar-
ture from the Kolmogorov picture. There are two
ranges of scales; denoting by Lp and ld the size of the
system and the dissipative scale, respectively, one
identifies ' a length lb above which buoyancy effects are
dominant. For lb((l((Lp we find different scaling ex-
ponents from the range ld« I« lb where standard ex-
ponents are expected. The length lb is shown here to de-

pend on the Rayleigh number R, and is predicted to
scale like LpR

In developing our theory we make use of a recent for-
malism advanced by Effinger and Grossmann for isotro-
pic turbulence. At the heart of this approach lies a sep-
aration of large-scale from small-scale motions. Con-
sidering a field A (x, t ) one defines a running average
A'"'(x, t) by

(ia)«u;(x+ r) u;(x)))-r,
«T(x+r) T(x)))-r~,
«T(x+r) u;(x))) -r~,

(ib)

(lc)

where the double angular brackets denote ensemble aver-

ages. For isotropic turbulence the Kolmogorov ap-
proach predicts a =P =

3 . The correlation between T
and u; vanishes in isotropic systems, whereas in a Ray-
leigh-Benard configuration with a temperature gradient
in the i =3 direction we expect «T(x+r)u3(x))) to ex-
ist. On general grounds all that can be said is that the
Cauchy-Schwartz inequality guarantees that

3
A "(x,t) = dy A(x+y, t)

4zr " Iv I— (3)

and a complement

A "(x,t) =A(x, t) —A '"'(x, t) .

Physically one expects A " to capture long-range
motions whereas A " reAects locally short-range
motions. The parameter r is left unspecified and carries( [«T(x+r)T(x)))«u3(x+r)u3(x)))] ~» the scaling information. It is easy to show that in homo-
geneous (but not necessarily isotropic) systems if
«~A(x+r, t) —A(x, t)

~
))—r' also &&A "(x,t)

xA " (x, t))) —r'. The scaling exponent of the former
is experimentally accessible, but theoretically we calcu-
late it via the latter.

The theoretical analysis of convective turbulence is
based on the Boussinesq approximation'

tiu;(x, t)/Bt = —uj(x, t)8,u;(x, t) —|i„,p(x, t)+ vV'u;(x, t) —(l —aT)gb;3,

riT(x, t)/Bt = —u, (x, t)B„,T(x, t)+ KV' (Ttx) f+(x, t) .

«T(x+ r) u 3(x)))

although from dimensional considerations we expect

24=a+P.
In this Letter we report a dynamical theory that shows
that buoyancy forces are responsible for a scale-depen-

(4)

Here p, v, a, g, and K are the pressure, kinematic viscosity, volume expansion coefficient, gravitational acceleration, and
heat diffusivity, respectively. It is assumed that the fiuid is in a box heated from below and f(x, t) represents the effect
of the boundary conditions on the temperature. f(x, t) will be taken as containing large-scale components only. Notice
that in isotropic turbulence one assumes such a forcing on the velocity. Here the forcing on the velocity is solely due to
buoyancy as displayed in Eq. (4). An auxiliary equation is the incompressibility condition B,,u; =0.

For convenience we shall denote the smoothing average of Eq. (3) by a single bracket, i.e., A t"~(x, t ):—&A (x+y, t))~" .
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An approximation that will be used below is that (A " (x+y, t))»") =A " (x, t), and consequently (A " (x+y, t))»' =0.
For a comprehensive discussion of this approximation see Ref. 6. Using this approximation Eqs. (4) and (5) turn into
the following equations for the superscale fields:

8,u;' = —u ' 8,.u;" —(u "(x+y,t)8,.u;" (x+y, t))" —8„.p " +vV u;" —(1 —aT("))gb;3~I

8, T" = —u "8,T" .
—(u " (x+y, t)8,T "(x+y,t)) ' +xV T " +f ",

and the following for the subscale fields:

(8, +u 8„.)u;" = —u. 8,,u;' —8„,p
' +vV u;" +&u (x+.y, t)8 u;(.x+y, t)& ' +agT "8;3,

(8, +ui8 )T" =
.
—ui8, T" +xV T " +(ui(x+y, t)8„T"(x. +y, t))»' .

(6a)

(6b)

(7a)

(7b)

(8b)

+A(r) (t = —~),

where x(t';z, t) is the path taken by a fluid particle that
reaches x=z when t'=t. Substituting such a formal
solution into the relevant terms in Eqs. (8) we find that
under the stated approximations many terms vanish.
Those that remain are all given as four-point correlation
functions containing two superscale fields and two sub-
scale fields. These shall be approximated as products of
two-point correlations, one in the subscale and the other
in the superscale fields. Notice that this is not a Gauss-
ian approximation but a dynamical statement about
decoupling of fluctuations occurring on widely diA'erent

length scales. Nevertheless we stress that any exponent
found below should be understood as a mean-field value.

Performing these operations and using the expression
for the pressure,

These equations are valid generally (within the stated approximations) for any Boussinesqian system. The system at
hand has the following simplifying features: Experimentally it has been found' that most of the average temperature
gradient is confined to thin boundary layers whereas the core of the fluid is almost homogeneous. It is natural therefore
to idealize the situation to a model of stationary, homogeneous, but nonisotropic Auid. Using these properties we can
turn Eqs. (6) into balance equations for the correlations of superscale fields by multiplying Eq. (6a) by u;' and Eq.
(6b) by T("), and ensemble averaging. Remembering the incompressibility conditions, the resulting equations are

((u "'(u,'"'(x+y, t)8,u "'(x+y, t)&'"')& —v((u "'V'u "'))=ag((u3"'T")) (8a)

((T (ui (x+y I )8 T (x~y t))(r))) x((T(r) V2T(r))) ((T(r)f (r)))

Notice that in the standard case of isotropic turbulence
the right-hand side (RHS) of Eq. (8a) is a forcing term Accordingly a formal solution is furnished by
of the type ((u ")f(")). Assuming that f„operates on

large scales only, this term becomes a constant for
I

r ((Lp, and is identified as the energy injection rate e. In A(z, t) = dt PRHs(x(t;z, t), t)
the present case ((T "f " )) becomes constant but the
forcing on u is ~ dependent on all scales. Physically this (9)
stems from the fact that eddies of difl'erent sizes gain
diflerent amounts of energy from the gravity field. This
r-dependent forcing will be responsible for the departure
from the Kolmogorov scaling. The terms on the left-
hand side (LHS) of Eqs. (8) have the interpretation of
energy transfer and viscous (or thermal) dissipation, re-
spectively. The first terms in both equations will be
shown to be related to eddy viscosity and eddy conduc-
tivity, respectively.

To proceed we have to treat the first terms on the
LHS of Eqs. (8) and convert them into forms containing
two-point correlations. The idea is to solve for
u;" (x+y, t) and T ' (x+y, t) by integrating Eqs. (7)
along a Lagrangian path. Both equations have the form

(8 +up 8„,)~ '"'(x, t ) =V«.(x, t ) .

8„,p =„dx'G(x')8.
, [8„,u, (x+x', t)8.„u,(x+x', t )],

where G is the Green's function that solves V G(x,x') =B(x —x'), we end up with the equations
——,

' N(„),(o)8., 8.,R„(;„)(.) i„=p

+„dx'G(x') 8„,. 8. [N„'„"„',(x') 8„,8..R„,.„,.(x')+N„'„„',(x') 8., 8„.R„,„,.(x') ]

—v&(u;" (x, t)V u;" (x, t))) =ag«u3' (x, t)T '(x, t)»,
and

—
—,
'

N„,"„,(0)8„;8„,R "(x') i„=o+ dx'G(x')8„8 [N "„,(x')8„,8„,R("„)(x')]

—x((T'"'(x, t)V'T'"'(x, t))& =&(T'"'(x,t)f '"'&),

(1Oa)

(lob)

2129



VOLUME 62, NUMBER 18 PHYSICAL REVIEW LETTERS 1 MAY 1989

where

R'p'(r') =(((a'"'(x+y, t)p"(x+y+r', t))))'"' (i ia)
t

N.'P'(r') =„((a'"'(z, t)p '"'(x(t ';z, t) + r', t') »dt '. (i il )

Notice that N, p of Eq. (11b) has the form of a Green-Kubo transport coefficient where molecular fluxes are replaced by
small-scale field components. These dress the molecular coefficients v and K.

The last crucial step of analysis involves treating the time correlation functions in N, p . We follow the spirit of Ref.
6, except that in this case the analysis is significantly more complex due to the anisotropy and the coupling between the
velocity and temperature fields. The analysis results in the relations

N, p (r') =C," (r') (f'"')„,' C,',"' (r'),

where

c.',"'(r ) =«.-"(,t)p" ( +.,t))),
r.'p'(r') = —((a'"'(z, t)d, p(x(t';z, t)+r', t'))&!,—,.

(i2)

(i3a)

(13b)

Using these results Eqs. (10) can be turned into coupled integro-differential equations in the relevant structure func-
tions. For the purposes of this Letter we stress the scaling laws that are implied by Eqs. (10). Using the three ex-
ponents a, p, and g introduced in Eq. (1), i.e., ((u&" (x, t)ui" (x, t)))—r', ((T("1(x,t) T " (x, t)))—rp, and
((ui' (x, t) T " (x,t)))-r», we find from Eqs. (10)-(13),after some algebra, in the limit of large r,

max(2a, a+P+ g, 3g) —max($, 2P) + a —2+ &a
—2

max(2a, a+P+ g, 3g) —max($, 2P) +P —2+ g
—max($, 2P) +max(/+ a,P+2$, 2P+ a, 2P+ g) —2+ P —2 0

(14a)

(14b)
Notice that in the isotropic case Eq. (14a) trivializes to

3a —2+ a —2 0

where for r large and a ( 2 implies the celebrated a = —',

result of Kolmogorov. Examining Eqs. (14) we see im-
mediately that a solution

p=-6 2 4

trivializes all the max functions and satisfies all the ex-
ponent equalities. Using also the condition (2) it is

found that Eq. (16) is the unique solution of Eqs. (14).
It is amusing to notice that the same exponents have

been suggested in Refs. 4 and 5 for turbulence in a
stably stratified medium, in which gravity bleeds energy
away from the turbulence. Our ease is opposite, since
buoyancy drives our turbulence. Apparently the dimen-
sional arguments in Refs. 4 and 5, which appear some-
what ad hoc, capture the essential physics which is

spelled out in our dynamical calculation.
Finally we need to estimate the length scale Ib below

which a crossover to Kolmogorov exponents is expect-
ed. ' The parameters that determine this length are ag
of Eq. (4) and the mean heat Aux J=((u3(x)T(x))), on
the one hand, and the rate of energy transfer e—uo/Lo,
on the other hand, where up is the typical large-scale
(Lo) velocity in the core of the fluid. We expect that the
nonlinearities would tend to isotropize the flow, such that
below some length scale isotropic models should hold.
This length can be formed from the parameters e, al
=J(8T/tiz), and ag by

&5/4/a 3/4 ( ) 3/2

uo —R / v/Lo. (18b)

In these scaling laws there should also be a Prandtl num-
ber dependence which we suppress since it is not known
experimentally to any acceptable precision. Using these
results in (17) we derive

Ib -R 3i28L, p,

up to numbers —1 and a weak dependence on the
Prandtl number. Thus for R of the order of 10' we ex-
pect about a decade of length scales over which the ex-
ponents (16) are measurable. For higher Rayleigh num-
bers this range of scales should increase, as the crossover
to Kolmogorov scaling is pushed further down to smaller
scales.

In summary, we have demonstrated that a dynamical
calculation yields scaling laws for the relevant correla-
tion functions in unstably stratified turbulence that are
in marked difrerence from Kolmogorov scaling, but in
agreement with dimensional arguments for the scaling
laws in stably stratified turbulence. We hope that the
experimental investigations would rapidly reach a level
where detailed comparisons with this theory are possible.

!
To estimate lb up to prefactors —1, we use the scaling
laws of Ref. 1 in terms of the Rayleigh number R
=agAL0/pcv, where d, is the temperature difference on
the boundaries of the box. Reference 1 offers scaling
laws for the Nusselt number Nu and the typical velocity
Qp.
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