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We present a new numerical method for calculating interference phenomena for waves propagating
through random media. The model is applied to calculate probability distribution functions for the
transmission P(T) in one and two dimensions, T being the transmission coefficient. The model repro-
duces the analytical predictions for one dimension, and yields new results for two-dimensional systems.
The distribution function P(T) in two dimensions, in the diffusive regime, is found to be close to a
Gaussian with a variance proportional to the mean, in agreement with the results of diagrammatic calcu-
lations. A crossover of the distribution to log-normal behavior typical for strong localization is obtained.

PACS numbers: 42.20.—y

In recent years there has been a renewed interest in
wave propagation (electron waves, ' electromagnetic
waves, and acoustical waves ) through random media.
It is now understood that interference between multiply
scattered waves leads to unusual phenomena, such as
universal conductance fluctuations in weakly disordered
metals. These fluctuations have been observed in
mesoscopic structures, i.e., when the sample size was
smaller than the inelastic scattering length (the length
that an electron travels between two inelastic collisions).
For optical waves, the inelastic length is macroscopic and
intensity fluctuations (speckle) patterns were recently ob-
served and interpreted as being due to interference phe-
nomena caused by multiple scattering. ' For these sys-
tems, it was recently predicted"' that there would be
anomalously large fluctuations in the transmission
coefficient for optical waves. This implies that in disor-
dered systems, it is not sufficient to consider only aver-
aged values of a physical quantity but one must examine
the full probability distribution.

In this Letter, we present a new numerical method for
studying interference phenomena and fluctuation eAects.
We have obtained the full probability distribution func-
tion PL(T), where T is the transmission coefficient for a
slab of thickness L and width W. We find that for
W&)L, this function is quite accurately represented by a
Gaussian. We hope that this prediction will encourage
measurements of distribution functions for the transmis-
sion coefficients for optical waves. We have also studied
the strip geometry, W&&L, and find a crossover in the
distribution function as L increases. We have also
checked the reliability of our new method by calculating
PL(T) for a one-dimensional system. Our probability
distribution function is in excellent agreement with
analytical predictions in both the weak- and strong-
disorder limits. Finally, our method yields new results
for the variance of the transmission coefficient for a

two-dimensional system, in agreement with the theory of
Stephen and Cwilich'' and Feng et al. ' when applied to
two dimensions.

Our method is quite general, and thus is appropriate
for studying interference phenomena either for electron
waves (which obey the Schrodinger equation) or for
electromagnetic waves (which obey Maxwell's equa-
tions). The new insight here is that at each step of the
calculation we deal only with a local scattering event
(single-scattering process). The interference due to mul-
tiple scattering is built up in time until the steady state is
achieved.

We first describe our numerical method and then dis-
cuss the results that we obtained for the distribution
function of the transmission coefficient. We consider a
set of complex numbers ilr, (m) which define the wave
function (or the electric field for optical waves) at a
discrete time m. The index a may refer, for example, to
sites on a lattice. At the next instant, m+1, the wave
function is determined by

ilr. (m+ I ) =QG.pilrp(m) .
P

The matrix G,p (the Green's function) is a unitary ma-
trix. It should also obey other symmetries of the prob-
lem, such as the time-reversal symmetry (if present).
We assume that G,p is independent of m, which corre-
sponds to a time-independent potential (quenched disor-
der).

Let us now be more specific and imagine a lattice of
blocks (sites) and pipes (bonds) such as illustrated in
Fig. 1. Each site represents a scatterer and is described
by a 2Dx 2D scattering 5 matrix, D being the dimen-
sionality (one can also allow for "empty" sites by assign-
ing to them a unit S matrix). ' The bonds represent free
propagation between the blocks. The wave function
iir, (m) is defined by a set of 2Nb amplitudes (a
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FIG. 1. The block represents a two-dimensional scatterer.
8 and 8 are the outgoing and ingoing amplitudes, respectively.
They are related by the equation 2; =PJ4-(S;,8(, where 5;, is
the 4&4 scattering matrix for the scatterer.

S( =a( exp[i(y(+y )], (2)

where ag =r, a ~2 =a ~3 =a24 =a34 rL, and a ~4 =a23
for l,m =1, . . . , 4 with the following constraint (for the

= 1,2, . . . , 2Nb ), where Nb is the number of bonds in
the lattice and each bond carries two waves propagating
in opposite directions. An S matrix at each site trans-
forms the 2D incoming amplitudes (at time m) into 2D
outgoing amplitudes (at time m+1). Thus, the station-
ary solution is built up step by step in time, eliminating
the need to diagonalize a very large 2' x2%b matrix.
To specify the model completely, we need to define the S
matrix assigned to each block. It is convenient also to
include in the S matrix the free propagation in the bond,
so that each block includes its corresponding half bonds.
The phases for each bond (see Fig. 1) are denoted by p;
(i =1,2, . . . , Nb). We confine ourselves to isotropic
scatterers and assume time-reversal symmetry. The S
matrix is then defined by four complex numbers which
correspond to scattering in four directions (forward
transmission t, reflection r, scattering to the right r~, and
scattering to the left rL). This is specified as t =

I t I e ',
r =

I r
I

e'™,and rL =rt( =
I »L I

e' '.
The scattering complex amplitudes, t„r, and rL, are

chosen to be the same for all the scatterers. The phases
p; on the bonds are changed from bond to bond indepen-
dently according to a uniform distribution between 0 and
2(r. This corresponds to a specific model of identical
scatterers separated by distances (bonds) which are dis-
tributed between some distance a and a+k (where X is
the wavelength). However, studies of various mod-
els' ' suggest that, for weak disorder, the specific type
of randomness is of no importance: The randomness
enters only via a single parameter —the measure of local
disorder. Thus, other kinds of randomness could be
chosen. This particular choice is motivated by the recent
successful real-space theories' for calculating correla-
tion functions by following multiple-scattering Feynman
paths with random phases at each step. The unitary and
symmetric S matrix for the object in Fig. 1 is defined as

0
0 0.008 0.016 0.024

P
FIG. 2. Resistance distribution for a one-dimensional chain

of forty scatterers. The squares represent the numerical simu-
lation and the solid curve represents the Poisson distribution
with p=0.004. Inset: A plot of PL(lnT) as a function of 1nT
for L =40 and po =

3 . The solid curve is the theoretical
Gaussian distribution.

choice Pt. =0):

tg(t =(
I t I

+ I» I coseo)/I»1»neo

where

go=a, —
y, =cos '( —

I rL I
'/I r I I t I )

(3)

and

I» I
'+2 I». I

'+
I t

I

'=1

P~(p) =P 'exp( p/P»—
where p=poL. In Fig. 2, we compare with Eq. (4) our
numerical results obtained for L=40 and p0=10 for
an ensemble of 2000 realizations. The agreement is very
good. We have also verified for L =40 and po = —,

' (see
the inset of Fig. 2) which corresponds to the strong-
disorder case, that PL (lnT) exhibits a Gaussian distribu-
tion in agreement with theory (see, e.g., Refs. 15 and 16
where references to earlier work were given).

It is easy to show that the unitarity of the individual S
matrix ensures the unitarity of the matrix 6 p for the en-
tire sample. We first demonstrate that the above model,
when applied to a disordered one-dimensional system,
yields results in excellent agreement with analytical pre-
dictions. In one dimension, of course, rL =0.

Let us consider weak disorder, i.e., the resistance po—:
I r I /I t I of each scatterer is small. It is known' '

that as long as the length of the chain L is much smaller
than the localization length g—:a/po (but larger than the
distance a between scatterers), the distribution PL (p) for
the total resistance p=R/T (R and T are the refiection
and transmission coefficients for a chain of length L) is

given by
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FIG. 3. The squares represent the variance of T vs (T) for a
slab with W =50 and L =7, 8, 10, and 11. Inset: (T) as a
function of l/L

We now extend our model to two-dimensional systems
of diff'erent geometries and find entirely different results.
We consider the case where the disorder is due to the
random phases p; on each bond. The strength of each
scatterer is assumed to be the same and provides the
measure of the local disorder (which determines the
mean free path). We choose symmetric scatterers, i.e.,

~r I
= Irl. ~

=
I t

~
which, by the unitarity relations, im-

plies ~r I
=0.25. (As will be shown below, this local

disorder is weak in the sense that a diff'usive regime ex-
ists; i.e., intensity propagates basically by a classical
diffusion process, which implies that the wavelength A. is
much shorter than the elastic mean free path l. ) First,
we consider a slab of thickness Z, and width O'. The
width 8' is illuminated by a plane wave, and reflecting
boundary conditions are applied on the sides perpendicu-
lar to the direction of propagation. This corresponds to a
wave incoming in one channel (channel a) which is
reflected or transmitted into all other channels b. The
total transmission T, is given by the sum over all the
outgoing channels, T, =QT,b, where T,b is the
transmission coefficient from a to b. According to the di-
agrammatic calculations, "' in the diff'usive regime
(where l»k), (T)=l/L and (hT )=(a/N)(T), where
N is the number of channels and a is a dimensionless
number of order unity"' (for brevity, we have
suppressed the index a in the transmission).

We have calculated the probability distribution Pi (T)
for four different values of L (L =7, 8, 10, and 11) with
a fixed value of W=50 and constant disorder. Let us
first discuss the behavior of (T) and (hT ). These quan-
tities are plotted in Fig. 3 where the four squares repre-
sent the results for four diff'erent lengths. To a good ap-
proximation, these squares fall on the straight line in
agreement with the theoretical prediction (hT ) cx:(T).
In the inset of Fig. 3, we plot (T) as a function of I/L
and the straight line obtained indicates that we are in the

diffusive limit appropriate to weak disorder (namely,
L « (, where g is the localization length).

Next, let us consider the full probability distribution
Pl (T). Our key result is that the bulk of the distribu-
tion can be represented quite accurately by a Gaussian.
The tails of course are not Gaussian since, among other
reasons, T can vary only between 0 and 1.

In Fig. 4, we have plotted the four distributions for the
four different values of L =7, 8, 10, and 11 with 8'=50
as a function of the variable A'—= (T —(T))/ (hT )'
For comparison, the solid curve in this figure gives the
Gaussian function (2x) 'l exp( —A' /2). Note that
there is no adjustable parameter and the agreement is
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FIG. 5. Two distribution functions for L=7 and 15 with
W=5. The symbols and 0 correspond to L=7 and 15, re-
spectively. The two curves are drawn through the calculated
points to guide the eye. Note the long tail of the distribution
for L =15. Inset: P(y) as a function of y where y =lnT for
L =15.

FIG. 4. The four distribution functions for the four values of
L (see text). The symbols ~, x, 0, and + correspond to
W=50 and L=7, 8, 10, and 11, respectively. The solid curve
represents the Gaussian function (2x) '~ exp( —A' /2).
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good.
We now turn to the case L ~ W. When L increases for

fixed W, one can expect a crossover from the diffusive re-
gime discussed above to the regime of strong localiza-
tion. In the crossover region, the relative Auctuation
6= (IJT—)/(T) should be of order unity. Indeed, our cal-
culations show that 8 changes from 0.5 to 4.5 as L
changes from 7 to 20 for &=5 and

~
r

~

=
4 . In Fig. 5,

we plot two distributions P(T/(T)) for two values of L
for a fixed value of 8'=5 as a function of T/(T). The
results clearly demonstrate that the distribution for L =7
(squares in Fig. 5) is entirely different from the case
where L =15 (circles). The two curves are drawn
through the calculated points to guide the eye. The dis-
tribution function for L =15 does not resemble a Gaus-
sian-type shape (as was found in Fig. 4). Moreover, the
long tail of the distribution demonstrates its major devia-
tion from a Poisson-type distribution [as given by Eq.
(4)] which is expected for quasi-one-dimensional systems
only for weak disorder. Indeed, we find that (T) de-
creases with L faster than 1/L which indicates that we
are close to strong localization. Correspondingly, we
have plotted (see the inset of Fig. 5) the probability dis-
tribution P(lnT) for L =15 as a function of lnT and
indeed find that it closely follows a Gaussian shape. The
steady state was achieved after m, steps (for m & rn, the
results did not change). For our smallest samples
(W'=5, L =7), m, =150 and for our largest samples
(&=50, L =15), m, =2000.

In summary, we have developed a new numerical
method for calculating interference phenomena. We
have applied this method to one- and two-dimensional
systems. In the one-dimensional case, the model yields
results in agreement with analytical predictions. In the
two-dimensional case, we have obtained new results for
the probability distribution of the transmission which
seems to be represented quite accurately by a Gaussian
(unlike the one-dimensional case) as well as a crossover
effect to log-normal behavior for the strong-disorder lim-
it. We have also confirmed the diagrammatic results"'
for (hT ) in the weak-disorder limit.
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