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Numerically Induced Chaos in the Nonlinear Schrodinger Equation
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The cubic nonlinear Schrodinger equation and some of its discretizations, one of which is integrable,
are studied. Apart from the integrable version the discretizations produce chaotic solutions for inter-
mediate levels of mesh (mode) refinement. Chaos disappears when the discretization is fine enough and

convergence to a quasiperiodic solution is obtained. Details are given for finite-diA'erence calculations,
although similar results are also obtained by Fourier spectral methods. Results regarding a forced non-

linear Schrodinger equation are briefly described.

PACS numbers: 05.45.+b, 52.35.Sb

The cubic nonlinear Schrodinger (NLS) equation,

iu, +u,„+Q I u I u =0,
where Q =const, i = —I, plays a ubiquitous role in

physics. It arises as an asymptotic limit of a slowly vary-

ing dispersive wave envelope in a nonlinear medium and

as such has significant applications; e.g., nonlinear optics,
water waves, plasma physics, etc. Moreover, it has the
distinction of being completely integrable via the inverse
scattering transform (IST). As such we are ensured that
the NLS equation does not possess chaotic behavior for
the standard initial-value problem (see Ref. 1 for a re-
view of IST and a discussion of physical applications).
Recently there has also been significant interest in par-
ticular forced versions of the NLS equation and approxi-
mate solutions via low-mode truncations. There are
numerous popular discretizations of the NLS equation
which provide a vehicle for numerical solutions. Some of
these discretizations are physically important in their
own right, with applications to nonlinear dimers, self-

trapping phenomena, biological systems, etc.
The NLS equation and some of its discretizations are

excellent models to study the phenomenon of numerical-

ly induced chaos. Some advantages are the following:
The equation is relatively simple, has known exact solu-
tions (see Refs. 1 and 6), and the discretizations are
straightforward. The discretizations we shall consider
here are of finite-difference type, although at the end we

remark upon another discretization —via Fourier spec-
tral decompositions. We will consider the schemes (as-
suming periodic boundary conditions, given by uj+N =uj
in the finite-diA'erence case),

iu, +(u, y~+u, ~

—2uj)/h +QIu, I
ut~" =0, k=1,2,

(2)

where (a) u~
' =ui and (b) uJ =(ut+~+u~ i)/2. Bo—th

schemes are of second-order accuracy and Hamiltonian.
In case (2a) there are two constants of the motion, the
I. norm, I =gt~=o'

I uj I, and the Hamiltonian

Ã —
1

H= —t g (Iu, +i —u, I'/h' —
2 QIu, I").

j=O

Hence, when % =2 the system is integrable. In fact, this
system has been used as a model for a nonlinear dimer.
The Poisson brackets are the standard ones.

The Hamiltonian structure of scheme (2b) is given
(for h =1) by the Hamiltonian

N —
1

H= —i g [u~*(u~ i+ut+i) =4Q 'ln(1+ —,
' Qu~uz*)l,

j=0

together with the nonstandard Poisson brackets
[q,p„1 =(1+ —,

' Qq„p„)B „and fq, q„f =0 =fp, p„).
This system has been demonstrated to be solvable by IST
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and there is an infinite number of conserved quantities.
General solutions can be obtained on the infinite line (see
Refs. 1 and 8) as well as on the periodic interval. In
fact, there are further partial-diff'erence analogs to case
(2b) which also have special properties and can be used
as eAective numerical schemes. ' However, in this note
we shall concentrate on integration of the schemes (2)
for long periods of time and shall see that for intermedi-
ate levels of discretizations, the schemes are markedly
diA erent.

It is well known (see Ref. 11) that the NLS equation
allows steady wavelike solutions that are unstable under
small perturbations (the so-called Benjamin-Feir insta-
bility' ). This means that if (1) is solved with the initial
values u (x,0) =a f I + e cos(p„x ) l, 1

e
1
« 1, as the initial

condition, where p„=2rrn/L, a, e are constants, and L is
the period, then all wave numbers n for ~hich

0 & p„&2g I ~ I'

will grow exponentially according to linear analysis.
These instabilities will then display the phenomenon
known as recurrence which has been observed both ex-
perimentally and numerically. ' Here we use this initial
condition to solve (2) with Q =4, L =242tr, a =0.5, and
e =0.1. These choices imply that the second mode n =2
is just on the edge of the instability region given by (5).
The time integration is performed by the Runge-Kutta-
Merson routine in the NAG (Numerical Algorithms
Group) software library and suIIiciently high accuracy is
specified in all our computations to ensure that the re-
sults reported here are not consequences of the time in-
tegration.

Recall that both schemes are integrable for N=2 and
in this case both methods have quasiperiodic solutions,
with scheme (2a) displaying qualitative behavior resem-
bling the behavior of the corresponding continuous solu-
tion of (1) (see Ref. 14). Surprisingly enough, if % is in-
creased it does not lead to a better approximation of the
NLS solution in the case of scheme (2a). In fact, if N is
increased through N =4 and higher values, the integra-
bility of scheme (2a) is lost and the solution displays a
weak form of chaos, typified by a broadband Fourier
spectrum of the time evolution. Figure l(a) shows the
modulus of the solution at x =0 for N =32 up to a time
T=256. The broadband Fourier spectrum is evident
from Fig. 1(b). For larger values of N the chaos gradu-
ally disappears until no trace is left at N =50. A steady
convergence to the analytical solution is observed if N is
further increased.

The solutions obtained from the integrable scheme
(2b) are in marked contrast with the previous results.
The solution is always quasiperiodic with steady conver-
gence observed for increasing values of N. The solution
obtained with N=32 is shown in Fig. 2. It is clearly
quasiperiodic and has nothing in common with the solu-
tion of the nonintegrable scheme, shown In Fig. 1 for the
same value of N.

When the NLS equation is perturbed its integrability
is lost, in general. For instance, Bishop et al. study the
following perturbed problem (apart from an elementary
transformation):

—
hatt, +it +

1
u l u =is[au+I exp( —it)],

where a, I are real constants, m =1, and the initial condi-
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FIG. 1. The NLS equation; standard diAerences, N =32.
(a) The time evolution of the modulus of the solution. (b) The
Fourier spectrum of the time evolution of the modulus.
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FIG. 2. The N LS equation; the integrable difference
scheme, JV =32. (a) and (b) as before.



VOLUME 62, NUMBER 18 PHYSICAL REVIEW LETTERS 1 MAY 1989

tion is given by u(x, O) =c+bcos(px) with p =2'/L,
L =1240.26, and c and b complex constants. Fixing
a=0.155, the equation is destabilized by increasing the
magnitude of the driver, I . Chaos is found for
I =0.275, using c = —0.4641+0.6103i, b =0.3883
—0.5206i, and this was confirmed by our own numerical
experiments. We are interested in qualitative differences
between solutions of the perturbed NLS equation using
the finite-difference methods (2a) and (2b). Solutions
are compared as the value of e is increased, with the
values of the remaining parameters fixed.

For a=0, the solutions from both methods, for all N
tried, show quasiperiodic behavior, illustrating that only
certain regions of the phase space of scheme (2a) contain
chaotic solutions. For small positive values of e, the
damping dominates and the solutions from both methods
quickly settle down to a rest state. However, as the
value of e increases into the chaotic region, the solutions
from the two methods again differ markedly. The
modulus of the solution at x =0 up to a time T=256,
using e =1 and N =8 for the two schemes (2a) and (2b),
are shown in Figs. 3(a) and 4(a). Although both solu-
tions display irregular behavior, the qualitative features
of the solutions are quite different. This is supported by
the Fourier spectra of the two solutions, shown in Figs.
3(b) and 4(b). The solution obtained from the integra-
ble method, (2b), is dominated by a few low frequencies,
superimposed on a continuous background. This is in
contrast with the solution of the nonintegrable method,
(2a), where the Fourier spectrum is more evenly spread
over the whole domain.

Our numerical results illustrate the marked differences

in the solutions of two finite-difference methods, which
are identical except for the small change in the discreti-
zation of the nonlinear term. Both are second-order ac-
curate and the usual comparisons based on convergence
estimates predict similar results for the two methods.
The fact that this is not the case in practice stems from
the crucial difference between the two methods —that of
integrability. Indeed, our numerical experiments con-
firm that chaos is present even in the exponentially con-
vergent Fourier spectral method. ' The situation for the
Fourier methods is similar to the one described above.
For N=2 the methods are integrable and reasonable
qualitative agreement with the analytical solution is ob-
tained. '" This qualitative agreement is lost when N is in-
creased and the solution becomes chaotic as well. The
exponential convergence only comes into play if N is in-
creased even further; considerably beyond the number of
modes one would expect intuitively. The situation is
analogous to the time-step restrictions imposed on nu-
merical methods to prevent numerical instabilities; the
nonintegrable scheme (2a) being analogous to condition-
ally stable methods (N needs to be large enough) and the
integrable scheme (2b) analogous to the unconditionally
stable schemes.

It should be stressed that the examples discussed in
this Letter are relatively simple. The spatial structure of
the initial condition consists of two Fourier modes and
only a relatively small number of spatial Fourier modes
are significant throughout the computations. The situa-
tion becomes more complicated when initial conditions
involving more modes are used. In this case even the full
spectral method, despite its exponential convergence, has
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FIG. 3. The driven NLS equation; standard diff'erences. (a)
and (b) as before.

FIG. 4. The driven NLS equation; the integrable diff'erence
scheme. (a) and (b) as before.
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difficulty approximating the analytical solution, requiring
more than 64 modes in some cases. ' Against this back-
ground it is not surprising that numer'ically induced

chaos has also been observed in a much more complicat-
ed situation —Rayleigh-Benard convection ' (see also
Ref. 17), where it is no longer known a priori whether
the solution is indeed chaotic for given parameter values
or not. Since our results show that chaos may disappear
for values of N much higher than what one would nor-

mally consider to be sufficient for adequate resolution of
the spatial structure, computational considerations for
realistic problems in higher dimensions may preclude
refining the spatial resolution to the relatively high de-

gree necessary to remove numerically induced chaos.
We shall refer to the numerical instability observed

here as numerical homoclinic instability (NHI). The
NLS equation has its own homoclinic structure, ascer-
tainable both numerically and analytically, ' which is

perturbed by the numerical schemes. Unlike the integra-
ble scheme, standard discretizations apparently allow

frequent homoclinic transversals at intermediate levels of
mesh refinement. Analytical studies of this process are
in progress. In fact, NHI can even be induced by round-
oA'error (same initial conditions, Q =2; see Ref. 15).

NHI is similar to the chaos observed by Bishop et al.
They find good qualitative description of the analytical
situation by means of a two-mode Fourier truncation
that is known to be integrable for the nearby unper-
turbed problem. It is unclear whether the inclusion of an
intermediate number of modes, as in our calculations,
will still give a reasonable qualitative description of the
analytical situation.

Admittedly, integrability is a special property. Nu-
merically viable integrable discretizations may not al-

ways be available and many problems are not even close
to integrable ones. The danger of confusing numerically
induced chaos with physical chaos in these cases em-
phasizes the importance of current attempts at estimat-
ing the Fourier dimension of inertial manifolds (see, for
example, Ref. 18). Knowledge of the finite dimensional-

ity of an attractor is of considerable value and estimates
of the dimension might provide information regarding
the resolution required for eliminating spurious numeri-
cal eff'ects and the ability of the numerical scheme to
capture the intrinsically important properties of the non-
linear evolution equation at intermediate levels of
discretization.
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