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Ordering Due to Disorder in a Frustrated Vector Antiferromagnet
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In many continuous spin systems, competing interactions give nontrivial degeneracies of the classical
ground states. Degeneracy-breaking free-energy terms arise from thermal (or quantum) Iluctuations,
which select for collinear states, and from dilution, which selects for "anticollinear" (yet long-range or-
dered) states. They are explicitly computed for an XY square-lattice antiferromagnet dominated by
second-neighbor antiferromagnetic exchange. The predicted phase diagram agrees qualitatively with
simulations.

PACS numbers: 75.40.Cx, 64.60.Cn, 75.25.+z, 75.50.Kj

Many periodic vector spin systems with competing ex-
change couplings have nonunique (classical) antiferro-
magnetic ground states: These form a continuous mani-
fold of degenerate states including not only the states
trivially related by the global rotational symmetry, but
additional sets of states related by applying different ro-
tations to the various antiferromagnetic sublattices. '

There is a large class of such systems: many spinels;
all face-centered-cubic (fcc) antiferromagnets including
type-I systems' (e.g. , y-Mn), type-II systems (e.g.,
MnO), type-III systems (e.g. , Cd~ Mn Te for larger
x), ' and possibly Cu nuclear spins; triangular antifer-
romagnets (possibly stacked) ' bcc type-II (e.g. ,

Ca3Fe2Ge30~2 garnet) ' dipolar-coupled spins on a
honeycomb lattice;' ' and fully frustrated cubic sys-
tems. ' In addition, they may be realized in certain su-
perconducting arrays at particular rational values of Aux

per plaquette.
When diluted by substituting nonmagnetic impurities,

such systems are supposed to become spin glasses: e.g.,
Cd] —~Mn~ Te, a diluted magnetic semiconductor '

where the Mn ions form a diluted fcc lattice with well
understood antiferromagnetic exchange constants. ' Ex-
perimentally, at p=0.4 this system is spin-glass-like'
while at p =0.7 it shows strong (but still local) antifer-
romagnetic order. ' ' Part of the motivation of this
work is to distinguish the spin glass from other phases
with random-field-like disorder which might be present
near p =1.

Not surprisingly, perturbations —thermal Auctuations,
quantum Auctuations, or dilution —lift these degenera-
cies and select specific states, reducing the continuous
degeneracy to a discrete one. ' ' I will call this "order-
ing due to disorder" ' by analogy to the Ising case.

In this Letter I argue that, in exchange-coupled sys-
tems, thermal and quantum disorder favor collinear
states, wherein spins are aligned parallel or antiparallel
to a single direction (which itself remains free to rotate);
but random dilution favors the least collinear states,
which I will call "anticollinear. " In addition, random di-

lution often makes effective "random exchange fields"
coupling to the discrete (but not the rotational) sym-
metries like a random field. These effects all compete,
yielding two or more antiferromagnetic phases. '

In the rest of the Letter, I will outline the general ar-
guments, and display the specific calculations for a 2D
XY system with second-neighbor exchange, ' the simplest
possible model with both rotational symmetry and non-
trivial continuous degeneracy. The rich phase diagram
predicted for this case is consistent with Monte Carlo re-
sults. "

Model system. —Let us take 4'Y spins on a square lat-
tice (lattice constant =1) with Hamiltonian
=

2 g;IJ~Icos(8; —81), where JJ =J~ (J2) for nearest
(second-nearest) neighbors. If f Jq [/f J2 [ (2, the sys-
tem in its ground state breaks up into two square
(J2XJ2) sublattices, a and b, each ordered antifer-
romagnetically (Fig. 1). To label the ground states,
choose one reference spin from each sublattice, say at
[0,0] and [0,1] with angles 8, and 8b. Then p—:8, —8b
parametrizes a nontrivial "degeneracy, " since the
ground-state energy Ep= 2N

~
J2

~
is independent of p.

This model might be realized in a two-layer square ar-
ray of superconducting islands with one quantum of Aux
per cell, in two layers of MnTe in CdTe (fabricable by
molecular-beam epitaxy), or in two adjacent square
Cu02 layers centered on each other (as in some high-T,
superconductors), where J

&
is a small interlayer ex-

FIG. l. Ground state on square lattice with J2 & —
—,

~
J&

~
.
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change. The spin- —,
' version appears in a study, 3

motivated by high-T, theories, of the loss of Neel order
due to large quantum fluctuations when I J| I /I J2 I

= 2.
Ground-state select~on. —Broad intuitive arguments'

suggest that thermal Auctuations favor the collinear
states, defined by cosp = ~ 1, whereas quenched fluctua-
tions favor the perpendicular states with sing= ~ l. In
either case, there are two senses in which the second sub-
lattice can orient collinear or perpendicular, so the con-
tinuous degeneracy is replaced by a discrete, Ising-type
variable.

Take h; =g~J;~s~, the local exchange field; in a ground
state, s; Ilh;. Also, for site i in sublattice a, let 8h;' be
the component of h; from sublattice b. The nontrivial
degeneracy arises because of a cancellation: h; =0
everywhere —classically, at T=0. In the presence of
thermal (or quantum) fluctuations, if 8'h;'Its;, it has no
effect on s; (to lowest order). To maximize the coupling
between the fluctuations of the two sublattices, we need
rather Bh;'i s;. But Sh;' is itself perpendicular to the
spins of sublattice b. Hence, a collinear alignment is
preferred. '

In a diluted lattice, even in the classical ground state,
h;'~0. Say we remove just one spin from site j in sub-
lattice b. For a neighbor i in sublattice a, h;'=+ Jlsl;
then s; will cant towards this direction by an angle
88;—J|/Jq. The energy is minimized when the {88;]are
maximized, i.e., when the two sublattices are perpendic
ular.

In either case, the same logic applies to other
exchange-coupled systems suggesting a universal rule for
the respective selection effects.

Spin-mode calculations. —Next I confirm the asserted
selection terms by calculating them from the Hamiltoni-
an expanded about a ground-state configuration {8;j,

»,=——,
' gW, , (y)a8, a8, , (1)

1J

where A;~ (p)—:4
I J2 I 6;1.—JJ cos(8; —8~). By Fourier

transforming, we find

with go(x) an even function, increasing with
I
x I:

go(x) =0.220+0.32x +. . . This confirms that the
collinear state cosp = + 1 is selected.

Secondly, in the case of quantum fluctuations (at T
=0), the small parameter is A. To define the quantum-
mechanical spin waves, we must endow the system with
reactive dynamics: d 8;/dt = —I dH/d8; —this is plau-
sible for both realizations of the model —so the spin-
wave frequencies are roq(p) =[I Aq(p)] 't . The ground-
state energy difference is given by the zero-point term,

E(y) Eo= —,
'— (2n) 'd'q hcoq(p)

=2A (I J2) ' glt2(J|cosp/2J2), (5)

where glt2(x) =0.9581 —0.082x +, again favoring
the collinear state with cosp = +' 1. '3

These spin-wave results for thermal and quantum Auc-

tuations can be connected to the intuitive arguments so
as to show that the collinear selection should apply to
general exchange-coupled systems. The selecting free
energies (4) and (5) have the algebraic structure

~ d'qf(~, (y)),
depending on the p only through A~(p). For thermal
fluctuations f(x) ee lnx and for quantum fluctuations
f(x) a:Jx. If the overall scale of Aq depended on p, this
would control the selection, but in fact its integral is con-
strained to be 2EO for every p value. Now, f(x) is con-
vex upwards in both cases. Then to minimize the aver-
age of f(x) with the average of x fixed, we need the x
values to be as strongly dispersed as possible. But the
collinear state has the maximum coupling between sub-
lattices, and hence [see Eq. (3)] the strongest dispersion
of spin waves; therefore it is selected.

Thirdly, consider the effect of dilution, with occupied
fraction p; here T=0 and Jl/J2 is the small parameter,
which ensures that the {88;] are small. For every possi-
ble p, we expand about the corresponding ground state
up to O(88; ):

», =N~ (2~) 'd'q —,'&,(y) I», I', (2) 8& = —H cosp —J 1 sing+ yq 88 q+p BP~. (6)

where

&q =41 J2 I (I —cosq cosq~ )
—2Ji (cosq„—cosq~ )cos p . (3)

Firstly, for thermal Auctuations the small parameter is
T. Following Ref. 12, we evaluate the free energy from
Eq. (2):

and

(H') =- (Sp) 'N, (7)

A constant has been dropped. Here Zq is the Fourier
transform of y;=g~( —1) ' ' (sum over occupied near
neighbors of i) and H:—J~g ~ ( —1) ' ' (sum over oc.

cupied neighbor pairs). These p-dependent constant and
linear terms are zero on average, with

F(p, T) Eo= ——,
' NTlnT —NTS—o(4)

& I yq I
2&=-4'(cosaq —cosaq~) (8)

where the "ground-state entropy" is

So(y) =const — I(2x) 'd'q lnAq(y)

=const+ go(J 1 cosp/2 J2),

for Bp=1 —p&&1. The quadratic term has been re-
placed in (6) by its average over realizations, with»&
given by (1). Minimizing the sum of the linear and
quadratic terms gives 8'8q = —(Jl sing) y q/p Aq, in-
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serting this into (6) and using (8), the average energy
(for p 1, J|/Jz 0) is

I,O-

(SP(tt)&—= —(J /2J )BpG —,sin p,

where

(9)

0.5—
j

AF»

2

1 —cosqz cosqy

this time favoring p =+ x/2.
It is clear that "anticollinear" selection holds generally

in systems with degeneracies, for the energy analogous to
(9) always takes its maximum value (zero) for collinear
states.

Random exchange Pelds As .—Fernandez has not-
ed, ' the 0 term in (6) can couple to the degeneracy
degree of freedom p exactly as a random field couples to
the spin direction. However, unlike a true random field,
it does not break the O(2) rotational symmetry, so I
propose instead calling such a term (which appears in all
diluted systems with "degeneracies") a "random ex-
change field" (REF). A strong motivation for investi-
gating REF's is that the "spin-glass" phase in
(Cd| —~Mn~)Te behaves experimentally somewhat like a
random-field system: The antiferromagnetic correlation
length grows with decreasing T and saturates roughly
around the susceptibility cusp, ' ' while the ac suscepti-
bility exhibits "activated" (logarithmic) dynamic scal-
ing.

The correct approach to the random exchange fields is
based on symmetry: Assume that locaOy the system is
essentially in one of the ground states selected by the
bulk term (9); determine whether the REF couples to
the order parameter, and if so whether the gain from fol-
lowing the REF locally outweighs the cost of the associ-
ated gradients in sublattice orientations.

At T=O, the dilution selection term (9) reduces the
degeneracy freedom to an Ising-type discrete degree of
freedom. Since cosp—:0 in the anticollinear state, the
REF's do not couple at all. On the other hand, 0 does
couple to the discrete degree of freedom of the collinear
state. That is, statistical Auctuations favor alignment in
one sense (cosp =1) in some domains and in the other
sense (cosp= —1) elsewhere. The REF's affect the col-
linear state exactly as random fields aff'ect an Ising mod-
el. In d=2 long-range order is lost and the collinear
state (AF~~ in Fig. 2) is actually part of the paramagnetic
phase. However, analogous systems in d & 2 retain col-
linear order.

Phase diagram. —The analytic results and the con-
siderations discussed above predict the phases and transi-
tions' shown in Fig. 2. Collinear and anticollinear or-
der are characterized respectively by order parameters

llfii=—g( —1) ' 'cos(0; —0i)

/
ci SG rt

O.500 I.OPc ~c

FIG. 2. Proposed phase diagram when p is the occupied
fraction, and J2= —1, ~ Ji

~

=1. Here "SG"denotes the "spin
glass, " AF~~ and AF~ indicate the collinear and anticollinear
antiferromagnetic states, and PM is the paramagnetic state.
The dashed lines are only crossover lines in d=2; true AFli and
SG phases exist only along the lines of heavy dots.

and

M&—=g( —1) ' 'sin(0; —0~).

The pure system has the same order-parameter sym-
metry [ZzSO(2)] as the triangular A'Y antiferromag-
net or the fully frustrated square XY model, and it is
plausible to conjecture it has the same critical properties:
a simultaneous ordering of the Ising and XY degrees of
freedom at T~(1). The collinear susceptibility g~~ corre-
sponding to M~~ and the specific heat C(T) should show
Ising-type critical divergences while the staggered mag-
netization correlations should show Kosterlitz-Thouless
essential singularities. '

The transition T/v(p) between the collinear and an-
ticollinear states has the form T~ (p) =const x Jz &p,
since the competing selection terms (4) and (9) are, re-
spectively, linear in T and Bp. Long-range anticollinear
order at T=O persists for p (1, down to p,' which
should be slightly above the site percolation threshold
(=0.59) of the Jz-coupled square sublattices. The sites
still percolate (by J| or Jz bonds) down to p, =0.41.
For p, &p &p,', Villain's picture suggests the ground
state is a spin glass.

Monte Carlo simulations ' (for J|=1,Jz= —1, with
1V ~ 50 spins) confirm the expected features: Collinear
ordering of the pure system occurs, at TJv(1)/Jz =-0.97
+'0.02, with T/v(p) =5.5JzBp, and p,'=0.6. This goes
beyond the analytic results, which were valid only for
small 8p and J~/Jz.

In conclusion, a two-dimensional XY model, chosen to
be the simplest antiferromagnet exhibiting "ordering due
to disorder, " has a very rich phase diagram determined
by competition between thermal selection favoring col-
linearity, dilution selection favoring anticollinearity, and
random exchange fields which tend to disorder the col-
linear selected states. Qualitatively similar behavior is
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expected in most such systems; analogous calculations
will be published elsewhere. ' ' However, since the
discrete symmetry diAers from case to case, the critical
behaviors and random-field responses may be quite
difI'erent.
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