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Effects of Surface Stress on the Elastic Moduli of Thin Films and Superlattices
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A thermodynamic model which predicts a significant sample-size effect on the elastic properties of
very thin films and small-period superlattices is presented. Compressive surface stresses cause the in-
plane interatomic distances in a thin metal film to decrease as the thickness decreases. For copper films
with a thickness of 0.75 nm, a 1% in-plane biaxial compressive strain is obtained which gives rise to a
50% increase in the biaxial modulus. This model also predicts a similar modulus enhancement (super-
modulus effect) in multilayered thin films due to strains caused by incoherent interfacial stresses.

PACS numbers: 62.20.Dc, 68.55.Jk, 81.40.Jj

The elastic properties of artificially multilayered and
superlattice thin films have been the subject of several
recent reviews.!™ For systems involving layered fcc
metals (e.g., Cu/Ni?), enhancements of 100% or more of
the in-plane biaxial modulus, as measured by a bulge
test, have been reported for a range of composition-
modulation wavelengths (layer repeat lengths) centered
around 1.5 to 2.5 nm. Such behavior has been termed
the “supermodulus effect.”” The shear moduli of thin
films composed of alternating fcc and bec layers (e.g.,
Cu/Nb ®), determined from Brillouin scattering measure-
ments, have displayed a softening of about 35% for a
composition-modulation wavelength A of about 2.0 nm.
For these systems, it was found that an expansion in the
interplanar spacing accompanied the modulus decrease.'
Recently, Clemens and Eesley’® determined Young’s
modulus perpendicular to the plane of the film in
Mo/Ni, Pt/Ni, and Ti/Ni multilayered thin films from
longitudinal sound velocity measurements. In each case,
a softening of approximately 20% was observed at small
A. Also, it was found that the softening was accom-
panied by an interplanar expansion, this expansion being
proportional to 1/A.

Any model of the supermodulus effect must explain
both the magnitude of the enhancement (or decrease),
and also why the effect occurs only for a limited range of
modulation wavelengths (equivalently, why the effect is
lost at small and large modulation wavelengths). Most
theories have been based either on electronic effects due
to the interaction of the Fermi surface with reduced Bril-
louin zones created by the periodic nature of the compo-
sition modulation,®™'! or on nonlinear elastic effects due
to coherency strains. 2

In this Letter we discuss the elastic properties of very
thin films of thickness ¢, and of compositionally modulat-
ed thin films of wavelength 2¢, within the framework of
nonlinear elasticity and Gibbsian thermodynamics. We
present a self-consistent calculation showing that for
very thin ( <5 nm) films and small-period superlattices
with incoherent interfaces, surface stresses'? can act to

significantly displace atoms from the equilibrium posi-
tions which they normally occupy in bulk macroscopic
assemblies. This change in interatomic distance affects
the elastic properties of nanoscale structures. The
analysis indicates that the surface stress induces lattice
strains which vary approximately as r ~! (or A ~!). Us-
ing reasonable values of the surface-stress parameter we
obtain in-plane lattice contractions of the order of 1%,
causing the biaxial modulus to increase by ~50%, and
owing to a Poisson effect, a corresponding lattice expan-
sion is induced in the thickness direction with a concomi-
tant decrease in modulus.

A supermodulus effect for the multilayered structure
in our analysis results because all of the layers undergo
in-plane lattice contractions. This is in contrast with the
coherency strain model, which attempts to explain the
supermodulus effect as due to strains generated by
coherent interfaces. Coherent films have one type of lay-
er under compression and the other under tension. As a
result, the higher-order elastic effects in each type of lay-
er will in large part cancel, resulting in only a small net
change in the overall elastic modulus.'*!> Several
difficulties with the model based on electronic effects
have been discussed previously. >

The surface-stress tensor f;; derives from the variation
of the surface free energy per unit area y with strain e;;,
and in the Lagrangian formulation it is given by '®

f,'_,' =87/6e,~j .

For an isotropic surface, the surface stress can be ex-
pressed as a scalar f which represents the reversible work
required to form a unit area of surface by elastic defor-
mation.!” It is to be distinguished from the specific sur-
face free energy, y, which corresponds to the reversible
work required to form a new surface by a process such as
cleavage. Ackland and Finnis,'® using an embedded-
atomic-type model,!® calculated the surface stresses of
bee transition metals. They found that in all cases the
in-plane relaxation of the {100} surface layer was inward
with strains ranging from 1% in tungsten to 16% in
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niobium. Also, the surface stress acting on these {100}
surface layers was larger in magnitude than the corre-
sponding surface free energy for all the elements they ex-
amined. Similar results have been obtained by Baskes?’
for the fcc metals using the embedded-atom method.

There have been few experimental results which have
given insight into the proper value of f. Mays, Vermaak,
and Kuhlman-Wilsdorf?! measured the lattice parameter
of small gold particles as a function of particle size and
used these results to estimate the magnitude of the sur-
face stress. Their results indicate that there is a lattice
contraction for small gold particles of radius —3 nm
compared to the bulk, and therefore f is a compressive
stress. Also, they concluded that the magnitude of the
surface stress is of the order of the specific surface free
energy y. More recently, Marks and co-workers %23
have analyzed the enthalpy and Gibbs free energy of
small gold particles in their description of multiply
twinned structures, and have assumed that the magni-
tude of f is of the order of y. In the following analysis,
we take f to be of the same order as y and to be a
compressive stress.

We consider a disk-shaped film of radius » and thick-
ness t. If t <r, the only surfaces that will contribute a
significant surface stress will be the planar surfaces. For
a very thin film, a compressive surface stress will biaxial-
ly strain the film, reducing the in-plane interatomic dis-
tance relative to that of a bulk solid where surface effects
are negligible. Assuming the film to be isotropic, the

change in internal energy AU is given by
AU=f7rr2tsde+f27rr2fde .

In this equation, e is the elastic biaxial strain due to the
surface stress, and s = [ Y de is the elastic stress response
of the strained film, where Y is the biaxial modulus. The
first and second terms represent the volume and surface
contributions to the change in strain energy in the film,
respectively. The strain e can be determined by minim-
izing AU with respect to e; if the strain dependences of Y,
f, and t are ignored, the biaxial strain is given by?*
e=—2f/Yt. Thus, we obtain the approximate result
that e~1/t. However, since e may be large enough that
nonlinear elastic effects can be important, the strain
dependence of the surface stress and the biaxial modulus
should be taken into account. The surface stress f can
be expanded in a Taylor series about e=0, retaining
terms to first order in e: f=fo+ (38f/de)oe. The biaxial
modulus is most conveniently expressed? as ¥ =Y,(1
—Be). It is also necessary to incorporate the strain
dependence of the radius and thickness of the film:
r=ro(1+e), and t=1¢(1 — ve), where v is Poisson’s ra-
tio. In each case, the naught subscript refers to values
the parameters would adopt under zero strain, i.e., values
representative of bulk behavior.

Using the condition d(AU)/de=0, and retaining
terms up to O(e?), we obtain a quadratic equation with
roots

o= [2(8f/8e)o/Yoto+ 11 £ {[2(8f/8e)o/Yoto+ 112+ (8f0/Yoto) (B/2+ v)} /2

2(B/2+v)

The term (9f/8e)o may be thought of as a surface
stiffness which can be considered to have a value of the
order of Y(do, where dy is approximately the interplanar
spacing. Choosing values appropriate for copper, Yo
=1.6x10!" Pa, v=0.3, f=1 Jm ~2 d¢p=0.21 nm, and
B =25, and evaluating the root corresponding to e <0
yields a value of e~ —0.01 for 10=0.75 nm.

Dividing AU by the volume zr?t of the film yields the
strain energy density, and differentiating this twice with
respect to the strain results in an expression for the
effective biaxial modulus Y* of the thin film,

Y* =Y0(1 -B€)+(Vf()+ Yodo)/t().

Again choosing values appropriate for copper, and for
to=0.75 nm, we calculate a relative increase in the
modulus AY/Yo=(*—Yy)Y, of the order of 50%.
This is in good agreement with computer simulations
performed by Wolf and Lutsko?® for thin slabs (and
grain boundary superlattices). On account of the Pois-
son effect, the compressive radial strains give rise to a
tensile strain of — ve in the thickness direction which re-
sults in a decrease in the modulus measured perpendicu-
lar to the plane of the order of — vBe.

2006

Our results indicate that there are significant sample-
size effects on the elastic properties of thin solids. In a
compositionally modulated thin film, a similar effect will
result for modulation wavelengths ~1 to 2 nm if the in-
terfacial stresses are sufficiently large. We expect that
values of y for incoherent interfaces formed between
different metals will be no less than the interfacial ener-
gy of a high-angle grain boundary in the lower-melting-
point metal. This is supported by experimental measure-
ments of interphase and grain-boundary energies in
many metals,”?® as well as theoretical calculations
based on the embedded-atom method.? These interfa-
cial energies are all of the order of Jm ~2. If we assume
that the interfacial surface stress for an incoherent sur-
face is also of this order, then our previous calculations
would also be applicable for multilayered incoherent thin
films, when the modulation wavelength is given by
A=2tp=1.5 nm. The analysis predicts an in-plane
modulus enhancement AY/Y, of approximately 50%,
which is the correct order of magnitude when compared
to experimental results (though somewhat smaller).!™>
This enhancement would be (approximately) inversely
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proportional to A.

The biaxial modulus in the direction perpendicular to
the plane of the film in superlattices should decrease by a
factor of —vBe. Also, this modulus should fall off ap-
proximately as 1/A. Perfectly coherent interfaces have
relatively little specific surface free energy,?”?® and as-
suming that this represents the approximate situation for
the surface stress, then we would predict that no elastic-
modulus anomalies would occur in structures containing
coherent interfaces (characteristic of small-repeat-length
superlattices).

Based on the above model the supermodulus effect in
superlattices is explained (at least in part) as due to non-
linear elastic effects caused by large elastic biaxial
strains generated by interfacial stresses in incoherent
films. As A is decreased, the strains become larger, and
the modulus changes increase. Eventually, a critical lay-
er repeat length A, is reached below which it becomes
more energetically favorable for the interfaces to be
coherent. As a consequence, the large interfacial stresses
of the incoherent interfaces disappear along with the as-
sociated compressive strains, and thus, the modulus
anomalies are lost.

The above predictions are in good general agreement
with the recent experimental results of Clemens and Ees-
ley.”® X-ray diffraction studies® of Mo/Ni, Pt/Ni, and
Ti/Ni multilayered thin films revealed that decreases in
the moduli perpendicular to the plane of the films oc-
curred in superlattices possessing incoherent interfaces.
These decreases, as well as the expansion in the interpla-
nar spacings in the direction of the layering, were in-
versely proportional to A. X-ray diffraction characteri-
zation® of Pt/Ni films showed that this multilayered sys-
tem had a critical layer repeat length A, of approximate-
ly 1.0 nm; when the repeat length of these films went
below A, the elastic modulus abruptly reverted to its
large values (i.e., the modulus decrease of incoherent
films was lost when the films became coherent at small
A)."8 All of these results are in agreement with the
theory presented here.

In conclusion, we have presented a theory concerning
anomalous elastic properties of thin films and superlat-
tices based on large elastic strains created by surface
stress effects. This theory gives several predictions that
can be tested experimentally. It is predicted that the in-
plane biaxial modulus should increase (the supermodulus
effect), the biaxial modulus perpendicular to the plane of
the film should decrease, and the ratio of this decrease to
the enhancement should be of the order of Poisson’s ra-
tio. The predicted modulus increases for superlattices
(approximately 50%) can account for at least part of the
supermodulus effect. Unlike the coherency strain mod-
el>!2 that predicts a supermodulus effect for coherent su-
perlattices, we predict that elastic anomalies occur in in-
coherent multilayers, and that these anomalies disappear
when the films become coherent at very small repeat

lengths. These modulus changes, as well as the elastic
strains that give rise to them, should be approximately
proportional to 1/A. As discussed above, all of these pre-
dictions have been borne out experimentally.”® Also, in
contrast to models that claim that the changes in lattice
constant perpendicular to the plane of the film are due to
strains localized at the interface in superlattices,7'8 we
predict that within each metal layer (of thickness to)
there will be a uniform expansion in the d spacing in this
direction. This expansion will depend on the elastic and
thermodynamic properties of the particular layers and
the incoherent interfaces. Sensitive x-ray analyses
should be able to address this issue.

It should be mentioned that there is a caveat associat-
ed with these considerations with regard to our conven-
tional notions of epitaxy which have been developed over
the past forty years. Equilibrium elastic theories
describing the maintenance of coherency consider a bal-
ance between the elastic strain energy in the overlayer
and the energy which would result if part or all of this
strain were relieved by the formation of misfit disloca-
tions causing the interface to become partially or com-
pletely incoherent.® As the overlayer relaxes, it is as-
sumed that it approaches its normal equilibrium (zero
strain) lattice constant. Our analysis predicts that a thin
overlayer will relax to a strained condition and that this
should be considered in the overall energy balance deter-
mining the maintenance of epitaxy. This effect will be
important for layers of thickness ~—10 nm or less and
will tend to alter the predictions of the coherent-to-
incoherent transition based upon misfit and film thick-
ness.
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