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Multilayer Adsorption on a Fractally Rough Surface
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Models are proposed for thick-film-coverage adsorption on a general fractal surface. The basic idea is
that long-range dispersion forces dominate the thermodynamic behavior. The analysis predicts the cov-
erage to be proportional to [ln(PO/P)]to it, where P/Po is the relative vapor pressure and D is the
fractal dimension of the surface. Experimental examples for this behavior are presented. They are
rough Ag surfaces, giving D =2.30.

PACS numbers: 67.70.+n, 64.60.Ak, 68.15.+e, 82.65.Dp

The characterization of surface roughness is an impor-
tant problem for both basic and applied science. Tradi-
tional techniques, based on the idea of isolated deviations
from planar surface geometry (e.g., a facet of an elemen-
tal solid with occasional steps and kinks), face the
difticulty of identifying a small number of structural pa-
rameters that can describe the roughness for a wide
variety of purposes. Typically they depend on a multi-
tude of model-specific parameters difficult to access in

practice. The concept of fractal dimensionality, in con-
trast, has proven very successful both in applying to a
wide variety' of complex surface geometries and in ad-
vancing our understanding of how the geometry
affects the physical properties of the system.

Early fractal analyses' have exploited the fact that
when a surface is scale invariant (self-similar or self-
affine) over a range of lengths, a;„ to a,„, the number
N of molecules of size a in this range required to cover
the surface with a monolayer is

N =Ca

where D is the surface fractal dimension and C is a con-
stant. A smooth surface satisfies Eq. (1) with D=2 and
C=surface area. A fractal surface obeys Eq. (1) with
2&D &3 and C=the Hausdorff measure of the sur-
face. Other methods include electronic energy transfer,
small-angle x-ray and neutron scattering, and pore-size
distribution. This paper explores how a semi-infinite
solid with a fractal boundary (surface fractal) controls
the thermodynamic properties of adsorbed films when
the number of adsorbed molecules N is much larger than
the number to form a monolayer N . The goal is a ther-
modynamic theory of fractal adsorption to replace the
cumbersome implementation of Eq. (1) with a method
that requires a single adsorption isotherm. The two
models of the adsorption process to be presented give

a
k Tln(Pp/P)

(2)

where k~ is Boltzmann's constant. Thus if we assume
the film of thickness z to have constant number density
p, and the volume Q(z), the coverage at pressure P on
the Aat surface is

N=pQ(gp) =pA(a)gp/a =N gp/a, (3)

where N pO(a) is the monolayer coverage for mole-
cules of size a. Equation (3) is the classical FHH iso-
therm. It contains several implicit assumptions such as
neglect of entropy effects, retardation, and many-body

very similar results and allow us to observe, via N2 ad-
sorption, fractal behavior of electron-beam evaporated
Ag. To the best of our knowledge, the only other report-
ed case of a fractal metal surface at molecular scales is
small Pt particles.

The starting point of our calculations is analogous to
that of the Frenkel-Halsey-Hill (FHH) theory of ad-
sorption on a Aat surface. The adsorbate is treated as a
continuum (structureless liquid), the density and energy
of which are only weakly perturbed by the substrate. In
that theory, the film thickness as a function of pressure P
and temperature T is predicted assuming that the film
consists of a slab of liquid which wets the substrate. The
difference in chemical potential between the film (p) and
bulk liquid (pb„~k) is given by the difference in the van
der Waals dispersion energies, p —

pb„1k = —az . Here
z is the film thickness and a takes into account both the
adsorbate-substrate and adsorbate-adsorbate interac-
tions, assuming the latter to be the same as in bulk
liquid. Equating the film (bulk) chemical potential to
that of its coexisting vapor at pressure P (Po), the film
thickness z is given by the pressure-dependent length
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eAects. In most circumstances, however, these neglects
introduce only small errors (e.g. , many-body effects lead
only to an error in the magnitude of a ' ). Thus gp is a
length scale incorporating all of the basic thermodynam-
ics and may serve as a length scale in order to probe non-
planar geometries.

To treat such nonplanar geometries, we adopt the
principle of local thermodynamics, which yields the equi-
librium condition for the system chemical potential p:"

p =p;„,(r)+v(r), (4)

where p;„t is the chemical potential of a uniform system
at the local (r dependent) thermodynamic condition and
v(r) is the external potential due to the substrate. Equa-
tion (4) is valid if v(r) is slowly varying, which is the
case at sufficiently large distances from the surface. If
the equipotential (v) surfaces are also sufficiently fiat (as
discussed below), then curvature effects may be neglect-
ed in determining the film-vapor interfacial condition.
Under these circumstances, this interface is an equipo-
tential surface. One may then infer the film boundary
shape corresponding to a given pressure P by comparing
Eq. (4) to the corresponding film condition on a planar
surface having the same value of v. This leads to the re-
sult that the liquid condenses in those volumes where the
potential v(r) is less than or equal to —k~Tln(Po/P).
In our model I, we assume that v depends only on the
distance z from the surface and is given by —az as in
the flat-surface case. This gives a film volume of Q(gp),
where A(z) is the volume of points lying at a distance
~ z from the surface (Fig. I) and gp is given by Eq. (2).
The corresponding equipotential surfaces turn increas-
ingly flat as z increases. For a fractal surface, Q(z)
scales as z + [number of particles of size z needed to
cover the surface, Eq. (I), times the volume of a parti-
cle]. Normalization so that 0 (a) is the monolayer
volume for molecules of size a gives 0 (z)
= Q(a)(z/a) . The coverage at pressure P is thus

N =pQ (gp) =N (gp/a)

This is the fractal generalization of the FHH iso-

v(z) = —8a
2Rz —z 2

designed in part to give the exact behavior of v(z) when
z(&R. We invoke the FHH Ansatz again to obtain the
film thickness z at pressure P: —k~TlnPp/P=v(z).
This gives

z(P, R) =R —(R —2(pR) ' if gp & R/2,

z(P, R) =R(pore filling) if gp ~ R/2,

(7a)

(7b)

where we write z as a function of P and R for purposes
below. Equation (7) reduces to the planar limit z=gp
when gp «R. To calculate the total film volume, we use
the fact that the number of pores with radius between R
and R+dR for a fractal is BR 'dR, where 8 is a
constant. ' Thus the total volume of a film of thickness
z 1S

rv(z' R)gR D ~ dRdp

where cv(z', R) =4' /3 if R ~ z', and rv(z', R)
=4z[R —(R —z') ]/3 if R & z' (volume of points in a
pore of radius R with distance ~z' from the wall).
R,„ is the outer cutoff of the fractal regime. The con-

therm, Eq. (3). As in Eq. (3), the domain of validity is

gp & a because the potential —az obviously holds
only for distances z & a. Thus for all relevant pressures,
the amount adsorbed increases more slowly on a fractal
surface than on a planar surface with the same number
of surface sites, N .

Improvement over the two basic approximations (po-
tential and surface tension) should leave the power law
in Eq. (5) unaffected. To check this, we turn to an ap-
proach which takes into account that the potential in a
trough is lower (contributions from several nearby walls)
than at the same distance near a mountain top. In this
model II, the surface is replaced by a set of spherical
pores mimicking troughs of various sizes (Fig. 2). Each
pore is treated as isolated and surrounded by an infinite
solid. This gives an upper bound to the eA'ect of multiple
walls. Proper counting of efI'ectively overlapping pores
will be done by appropriately choosing the normalization
constant. In a spherical cavity of radius R, the potential
energy v at distance z from the wall is adequately de-
scribed by the expression '

3

FIG. 1. Equipotential surface generated by a fractal sub-
strate. It represents the film-vapor interface in the absence of
surface tension. In the model, it consists of all points with the
same (minimum) distance z from the substrate.

FIG. 2. Replacement of the fractal surface by a set of
spherical pores of variable radius R.
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in the limit R „. „&)a. The coverage N at pressure P is
obtained by setting z' in Eq. (8) equal to the equilibrium
thickness Eq. (7):

N =p„ro(z(P, R),R)BR ' dR .

Insertion of the expressions for co, z, and B yields

N =kN (gp/a)

(9)

(io)

with

k =2" "r(D+1)r(-', )/r(D —
—,
' ).

The gamma functions result from taking R,„/gp
integration by parts, and tabulated relations.

Equation (10) differs from the previous result Eq. (5) by
only the proportionality factor k. Thus multiple-wall
effects give at most a change in prefactor, leaving the ex-
ponent unaff'ected. In view of the distinct approxima-
tions, it is remarkable that 1 ~ k ~ 1.042 in the entire
range 2~ D~ 3.

We note for comparison two recent results: Cohen,
Guyer, and Machta ' explored the problem of adsorption
on a surface pockmarked with a self-similar distribution
of pores. Their approximations diAer from ours, as does
their result. ' Cheng, Cole, and Stella' computed the
exact potential v(r) for an explicit model surface which
is planar at small length scales and fractal at large

stant B is determined from the condition that Eq. (8)
equals the monolayer volume Q(a) for z'=a. This gives

4rrB/3 = 0 (a)a (3 —D) (2 —D) (1 D)—D/6

z max

Z Al 1 A

in(P, /P;„)
in(P, /P. ,„)

scales. Omitting surface tension, as was done here, they
find agreement with Eq. (5) in the fractal regime and
with Eq. (3) in the planar regime of film thickness.

In Fig. 3 we present adsorption data for N2 at 77 K on
two rough Ag surfaces. The samples are the silver elec-
trodes plated on quartz crystals normally employed in
microprocessor circuits. ' If we identify the coverage at
P/Pa=0. 05 ("knee") with inonolayer coverage, the ex-
perimental curves in Fig. 3 give N values approximate-
ly 2 and 3 times, respectively, that of a fiat Ag surface.
Thus from a conventional roughness viewpoint the two
Ag samples have a roughness factor of 2 and 3. We now
show that the isotherms suggest that the two samples
have actually the same roughness (in the fractal sense),
namely, a fractal dimension of D =2.30~0.02, and that
the different N values are due to different upper limits
of the fractal regime. Figure 4 exhibits that the two iso-
therms obey Eq. (5), or equivalently Eq. (10), over a
range of 1n(Po/P) from 0.03 to 0.5 and from 0.003 to
0.5, respectively. The least-squares fit (to the linear re-
gion) results in D =2.30 for both samples, with a correla-
tion coefficient of 0.997 and 0.993. The range of the
fractal behavior is obtained as follows. The lower end of
the pressure range where Eq. (5) holds, ln(Pp/P) =0.5,
corresponds to a coverage of N=2. 7N (for both sam-
ples) and thus to a layer thickness z =2.7a if we assume
the samples to be smooth up to that coverage. Taking
a = 3 A for N2, we obtain z;„=8A for the lower end of
the fractal regime. The upper end, z,„, is obtained
from
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FIG. 3. Adsorption data for N2 on two rough Ag substrates
at 77 K. The substrates consist of electron-beam evaporated
silver on quartz. We measure the quantity adsorbed in units of
ng/cm where the reference area is the macroscopic surface
area of the electrode, i.e., the area of a hypothetical planar de-
posit. The dashed line shows the isotherm calculated for a flat
surface, Eq. (3).
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FIG. 4. Same data as in Fig. 3, in a representation to test
for Eq. (5). The solid lines show the fit of Eq. (5) to the data.
The dashed line corresponds to adsorption on a flat surface, Eq.
(3). Note that ln(Pp/P) = (Pp —P)/Pp in the regime of in-
terest (P Pp).
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[recall Eq. (2)], giving z,„|=20k and z,„2=45 A
where the subscripts refer to the respective substrates.
As the two substrates have the same zm;„and D, a simple
application of the fractal mass-radius relation implies
that the monolayer values should satisfy N &/N
= (z~» 1/zm» q) . This predicts N i/N 2 =0.8,
consistent with the original value of =0.7 for this ratio.
For substrate 2, the isotherm follows Eq. (5) up to the
largest measured pressures. For substrate 1, the depar-
ture frotn Eq. (5) at large pressures is interpreted as due
to nonfractal roughness above 20 A. The departure from
Eq. (5) at low coverage, for both samples, is in agree-
ment with the remark after Eq. (5). The fact that the
two samples, made by diA'erent manufacturers, give the
same D value is quite remarkable. In contrast, measure-
ments on some 30 other rough deposits (non-Ag) did not
give any significant linear behavior in plots of the same
type as Fig. 4. ' More recently, scanning-tunneling-
microscopy (STM) studies were carried out on a Ag sur-
face prepared by the same manufacturer as substrate 2,
and whose adsorption characteristics revealed a D value
of 2.32. ' The STM result is D=2.30~0.10 over a
range of 5-50 A (from pore-volume distributions and
power spectra), in excellent agreement with the thermo-
dynamic results presented here. Details will be pub-
lished elsewhere.
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