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We numerically investigate collisions of cosmic strings carrying diA'erent winding numbers. %e find

that for strings with winding numbers n I and n2, intercommutation occurs by peeling a string of winding
number ~n~

—n2~ from the string with the larger winding number. The resulting string connects the
original colliding strings to form a state of three joined strings, but because of the peeling the eventual
result is a reduction in the winding numbers of the network. Stable astrophysical strings with large
winding number are thus unlikely to persist. All simulations have gauge/scalar-field mass ratio =2.

PACS numbers: 98.80.Cq

Since the introduction of the cosmic-string theory, it
has been clear that the process of chopping off loops
from infinite strings via intercommutations needs to be
investigated. Loops breaking away from the main net-
work are required to form seeds around which matter be-
gins to accrete. " A numerical treatment seems unavoid-
able because the nonlinearity of the theory prevents
making definite conclusions from analytical approaches.

Numerical studies - of intercommutation have shown
that local and global strings exchange partners under
most circumstances. Recently, ' we have extended the
numerical analysis to superconducting-bosonic-string in-
teractions and found the same result. In all these nu-
merical simulations each of the colliding strings had
winding number equal to unity. It has been suggested
that by allowing the strings to possess unequal winding
numbers, the intercommutation could become more com-
plicated because the wrapping of the scalar-field phase
prevents a string with no branches from changing its
winding number between different points along the
string.

We have performed numerical simulations to investi-
gate how the outcome of intercommutation is changed
when the colliding strings have unequal winding num-
bers. The interacting string consists of a complex scalar
field +=Re'~ minimally coupled to U(1) gauge vector
field A„with the scalar field self-interacting through the
standard "Mexican-sombrero" potential. The Lagrang-
ian for the system reads

X = —, V,RV'R+ —,
' R (V, itt+eA, )V'ilt+eA')

+(X/8)(R —
tl ) + —'F t,F'

where F„b=V,Ab —V~A, and e, X, and g are positive
constants. In cylindrical coordinates (p, p, z), consistent
static coupled-fields solutions are found to have the form
R =R(p), y=ntlt, and A, =(n/e)[P(p) —I]V, tt. Here n

represents the winding number. Since the vacuum mani-
fold arising from the Mexican-sombrero potential is not
simply connected, n counts the twists in the phase of the

scalar field.
The interstring potential is determined by tt=e/JX,

the relative strength of the gauge and scalar fields. As
for Aux lines in the Ginsburg-Landau theory of super-
conductors, U(1)-gauge cosmic strings can be classified

by the value of a. If a & 1, the equations describing stat-
ic strings are identical to those of type-I superconductivi-
ty. Parallel vortices of this type attract each other be-
cause the magnetic penetration depth of the U(1)-gauge
(repulsive) field is smaller than the coherence length of
the scalar (attractive) field. The situation reverses for
a & 1. Here parallel strings are like vortices in type-II
superconductors and have repulsive interactions. Thus
one intuitively concludes that only type-I vortices with

winding number n & 1 are stable. Indeed, studies of
classical solutions verify that n ) 1 type-I (type-II)
strings are stable (unstable). Therefore, analysis of
n & 1 string collisions must be performed on type-I vor-
tices.

We have carried out numerical string-collision simula-
tions for 45', 90', and 135' incident angles and
v/c ~ 0.75 initial velocities since strings typically reach
relativistic speeds when friction becomes negligible. '

Each colliding string, labeled R (L) right (left) with

winding number ntt (nt) is a type-I vortex. We have
chosen a =2 because in general one expects the parame-
ters e and JX to be of the same order. Results are simi-
lar for all cases considered.

The simulations used Matzner's code for string in-

teractions adapted to allow collisions of strings with un-

equal winding numbers. Initial data are constructed by
superposed boosted static strings. The Lorentz gauge is
used to simplify the wave equations for both the gauge
and dynamic variables. One may verify that the boosted
static solutions for A, satisfy this gauge. The evolution
uses an explicit staggered leapfrog difference scheme,
second order in both space and time. " Boundary condi-
tions are obtained from the initial data, and they behave
as if the strings extended infinitely out of the 64 compu-
tational grid. We find very small (~ 0.01) relative
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differences between the interior evolved region near the
boundary and the analytic boundary forms until interior
effects reach the boundaries. Energy conservation was
tested by computing the sum of the time-time component
of the stress tensor throughout the cube; it is maintained
at ~ 0.05 relative until interactions reach the boundary.
The Lorentz-gauge condition is preserved during the evo-
lution of ~ 0.04 relative change. A simpler test of ener-

gy conservation is to compute the kinetic energy of a sin-

gle moving string segment. We find ~0.01 relative
change in the kinetic energy upon evolving the string
completely across the computational cube. The code has
also been tested by comparing 64 and 128 computa-
tions, for which identical results (relative changes
~0.003) are obtained on sampling back the computa-
tion to 64 .

Figure 1 shows the evolution for (nL, nR) =(2, 1), 90',
and v/c =0.75. The string with larger n has larger core
radius. Stability of the nL =2 string is verified since we
compute the linear energy density for nz =2 and find it
7.9% smaller than twice the linear energy density for
nL =1. When the strings approach each other, the nL =2
string starts splitting into two n=1 string branches in

the region close to the interaction. After the collision,
the nR =1 string reconnects with one of the branches of
nL =2; the direction of the U(1)-gauge magnetic flux
determines the direction of reconnection and which of
the string branches intercommutes with the n~ =1
string. The other n=1 branch continues joining the two
ends of the nL =2 string. As the evolution proceeds, the
joining point of the two nR =1 strings peels outward, ap-
parently at the speed of light. The final configuration
consists of a network of two reconnected strings joined
by an n = 1 string-bridge, but with the joints peeling out-
ward into the nL =2 strings.

Figure 2 shows the case (nl. , nR ) = (3, 1), 90', and
v/c =0.75. Here again ni, =3 stability is verified since
the linear energy density for nL =3 is 11.3% smaller than
3 times the linear energy density for nL =1. The system
evolves similarly to that of the previous case, peeling off
the ni =3 string by the nz =1 string. However, the
string-bridge now has winding number n=2. Figure
2(c) shows when the string-bridge branches temporarily
into two n =1 strings; they subsequently merge back to a
single n =2 string-bridge.

As a consistency check, we obtained sections of the
signs of the imaginary part of the scalar field. [In cylin-
drical coordinates @;,s =R(p)sin(np). ] Figure 3 shows
the signs of N;, s after intercommutation for Figs. 1(d)
and 2(d); in each case two parallel slices were taken
across the L string, one near the boundary and the other
across the string-bridge. The centers of the correspond-
ing strings are indicated with zeros.

As we move around the zero in Fig. 3(a) that denotes
the position of the L string for the case (nL, n~) =(2, 1),
there are four regions where N;, g changes sign, meaning
that indeed the L string has winding number nL =2.

(a)

(c)

FIG. l. Evolution of ( (@ ~

—
g (/g for (nL, nR) =(2, 1). The

fatter (left) string has n=2. The contour label is 60% of the
maximum value, which occurs at the string core.

From Fig. 3(b) the string-bridge clearly has n =1 since,
when circling the bridge, there are two regions with
diA'erent signs. Similarly, for (nL, n~) =(3,1), Fig. 3(c)
shows the L string having nL =3, and Fig. 3(d) the
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(a) ~4 ps
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FIG. 3. Sections of the &;,s signs. Sections (a) and (b)
correspond to (nl. nn) =(2, 1) shown in Fig. 1(d), and sections
(c) and (d) to (nL, nR) =(3,1) in Fig. 2(d). Slice (a) was tak-
en near the boundary across the nL =2 string, and section (b)
cuts across the string-bridge. Similarly, the slice (c) cuts
across the nL =3 string and section (d) across the string-bridge.
Zeros denote the string position.

FIG. 2. Evolution of ( ~C&( —rt(/rt for (nL, nR) =(3,1). The
fatter (left) string has n=3. The contour label is 60% of the
maximum value, which occurs at the string core.

string-bridge with n=2. Such behavior is also observed
for the other cases not shown, corroborating the general
result that the string-bridge has a winding number

7lL PlR

For U(1)-gauge strings arising in field theories with
the gauge-vector mass greater than the scalar-field mass,
it is possible that n & 1 stable strings can exist. The usu-
al theory of formation of such objects assumes that a
Kibble mechanism, ' when the phase wraps by multiples
of 2x, generates them. But there seems to be no reason
why a multiply wrapped string would form rather than a
somewhat randomly oriented collection of n=l strings.
Further, if the result after the phase transition is of a
jumble of n=l strings, there is no obvious way they
could merge into a large-winding-number object. Forces
between these gauge strings fall off exponentially with
distance, so while a lower energy state exists, the path to
it is via a very Aat part of the interaction potential ener-

gy, and many Auctuations may interfere with the forma-
tion of multiply ~ound strings.

The kinetic energy of the interacting strings, which in

the early Universe is expected to be considerable, and the
disruption of the axial symmetry due to the second string
overcome the binding which normally prevents n & 1

type-I strings from decaying. The result is that, for in-
stance, an n= I string catalyzes as n=2 string (putting
in energy) to break up by peeling, leaving three n=1
strings which can further catalyze the process. If inter-
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commutation of strings with different winding occurs
with considerable frequency, the peeling process would
also complicate the branching structure of the string net-
work because of the appearance of string-bridges after
each collision. Since it is commonly believed ' ' that
typically strings have comparable parameters e and Jk
(10& a & 0.1) and that the collisions occur with relativ-
istic incident velocities, we can conclude from our simu-
lations that interactions between unequal winding-
number strings will reduce the maximum winding num-
ber of the surviving strings. Therefore, the large
winding-number strings are in general unfavored dynam-
ically, even for choices of parameters that make them
energetically stable. These computations have not con-
sidered the strongly bound case, that is, the attracting
limit (a»1). It is possible that in that case, with very
small collision velocities and small crossing angles, "re-
verse peeling" could occur. We only note that Shellard,
in numerical work on the global-string case (a=ee),
finds that for angles not equal to 0 or z approaching
strings tend to antialign near segments in a way which
leads to annihilation of those segments and reconnection,
especially for small angles and slow velocities. These
suggest that (a»1) strings may be unstable to non-z-
symmetric perturbations. This question needs to be in-

vestigated further, but if it is the case, then for the
large-a, as well as the a=2 case considered here, only
n =1 strings are of serious astrophysical interest.
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