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Quantum Disorder, Duality, and Fractional Statistics in 2+ 1 Dimensions
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We discover low-energy equivalence between two apparently unrelated Lagrangians with fractional
statistics. Exploiting this equivalence, we are able to study the quantum disordered phase of the non-
linear o model with Hopf term. We find that the quasiparticles in the disordered phase also have frac-
tional statistics. There appears to be a dual relationship between the ordered and disordered phases.

PACS numbers: 05.30.—d

Recently there has been a great deal of interest in
(2+1)-dimensional Lagrangians with Chern-Simons
terms.'™® In particular, Dzyaloshinski, Polyakov, and
Wiegmann'® suggested that one such Lagrangian may
be relevant to high-7,. superconductivity. In this paper,
we show that two apparently unrelated Lagrangians with
Chern-Simons terms are actually intimately connected
with each other. Exploiting this equivalence to uncover
the physics contained in these Lagrangians, we find that
a duality-type relationship connects two different
descriptions of the physics.

We begin by briefly reviewing what we need to define
the Lagrangians in question. A few years ago, it was
shown? that the soliton in the (2+1)-dimensional O(3)
nonlinear o model can be quantized to have fractional
spin and statistics. This is accomplished by coupling a
gauge potential A, to the topological current

JE=(1/87) "™ €apcn® 8 ,ndyn¢ 1)

(a=1,2,3 and n’=1), and by introducing a Chern-
Simons term. Thus we write

Lo=02/g?)(@n)*+ A, J*+ae**A,F, . )

Integrating out A, in the Landau gauge 9,4 =0, we
find the action

So= [ d*x(2/g?) (an) 2+ 0H , 3)

where the so-called Hopf term
— 1 3 Vi 1
—Efd x e }‘Jﬂa‘,?.’; 4)

is nonlocal. We have defined
=—1/8a. (5)

For a given spacetime configuration n(x,z) with the
boundary condition n(x,z)— some fixed no as (x,t)
— oo, we have a map of S 3 into S2. H is the normalized
integral invariant associated with the homotopy
73(S3)=Z. Thus, H is an integer and we see clearly
that classically the physics is independent of 6. Quan-
tum mechanically, however, each spacetime history is as-
sociated in the path integral with a factor e, where n
labels the homotopy class of the history.>'! The param-

eter 0 is clearly an angular variable and the physics de-
scribed by (2) or (3) should be periodic in 6 with period
2x.

The origin of fractional statistics'? is quite simple.
From (2) we have the equation of motion

20" Fy=—J,. )

Consider a soliton sitting at rest and carrying qo units of
the charge fd 2x Jo. Far away from this soliton F ;=0
according to (6) and so the gauge potential 4, is a pure
gauge. However, it is topologically nontrivial since

i = _ —1 2 _ 9o
Paxia=fasFa=t faxs=—22, @)
where C is a contour at infinity encircling the soliton.
Taking another soliton slowly around this contour, we
would thus induce in the wave function a phase propor-

tional to fdx" A;. This phase can be interpreted as frac-
tional statistics. It is important to realize that this argu-
ment does not depend on J* being the topological current
in (1). Any conserved current would do in the construc-
tion. The localized charges associated with the current
would then acquire fractional statistics. We note that
the phase can also be computed from (4).

We may rewrite (2) and (3) in terms of a complex
doublet

z=
Z2
related to n by

ni=z%re; (8)

where 7° denote the Pauli matrices. The constraint z 'z
=1 implies that n?=1. (It is thus clear that z describes
S3 and n describes S2. The relation between n and z
defines the lowest nontrivial map of S3 onto S2.) Insert-
ing into (2) we find

Li=02/g»)3zT8z+(z192)2
—i/27) A" 8,270z + ae* 4, F,n.  (9)

The calculation is most conveniently done by recognizing
that J* is described by the two-form trn(dn)? with
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n=n"=2zz"—1. One finds easily that trn(dn)?=8
xdzVdz.

The use of z instead of n reveals that the topological
current

Jﬂ =2—7:6#v;»é)vz*axz = El;r‘fuvx aV(Z TaAZ)
is explicitly a curl. This fact is not at all clear when J,, is
written in terms of n as in (1). Referring back to (4),
we see that the nonlocal Hopf term actually has three
derivatives in the numerator. It is perhaps not surprising
that two of these derivatives combine to cancel out the
nonlocal operator 1/82. The Hopf term when written in
terms of z is actually local,

H= (i/4n'2)fd3x € (270,2)9,(z79,2)

=(i/47r2)f(zfdz)(d21dz). 10)

This result was derived in Ref. 3 using a slightly
different formalism.
We see from (8) that the local transformation

z(x)— e®@z (x) an

leaves n(x) invariant. This simply reflects the fact that
we have used z with its 3 degrees of freedom (with
z'z=1) to describe n with its 2 degrees of freedom. The
overall phase of z is in some sense a fictitious degree of
freedom. We easily verify that .£, is indeed invariant
under this local transformation as it must be since it is
obtained from .Ly by direct substitution. This local in-
variance can be made manifest '3-!'3 by introducing a
gauge potential a, and by rewriting £, as

Li=0/gH)| @, —ia)z]|?
—(i2m) A" 8,270,z + ae* A, F,, . (12)

As was emphasized earlier, the construction leading from
(1) to (2) can be repeated for any (2+ 1)-dimensional
theory with a conserved current J¥. Thus, for instance,
we can consider a charged scalar field ¢ and the La-
grangian®®

L,=02/g) | @, —i)e| 2= V(s 9)+pe* 4, F,. (13)

If we generalize this Lagrangian slightly by considering
a doublet

01
0= 2
and if we suppose that the potential V(¢'¢) forces

¢T¢=l, then we are led to consider a Lagrangian .£;
somewhat reminiscent of .£i:

Lr=02/g)) | @, —ia)z|*+Be"*a, fn. (14)

Here we have purposely written a, in place of A4, and
defined f,,=0,a,—0,a,. There has been a great deal of

1938

interest in this Lagrangian after Dzyaloshinski, Po-
lyakov, and Wiegmann suggested that it may be relevant
to high-T, superconductivity.

One purpose of this Letter is to clarify the relation, if
any, between L, (or equivalently L) and .£;. At first
sight, the two Lagrangians look totally different. In .[,
the gauge potential is coupled to the topological current
associated with how z or n is twisted, while in £, the
gauge potential is coupled to the current associated with
the z quantum. In particular, the current in .£; involves
two spacetime derivatives while the current in .£, in-
volves only one derivative. This difference is accentuated
when L, is written as .L|, showing that there are two
gauge potentials a, and 4, which one could easily con-
fuse.

Nevertheless, we will show that these two apparently
distinct Lagrangians are closely related. Consider the
Lagrangian

L2 =igz—2 | 3, —ia,)z| %+ 2—1”‘6‘“'}"14“ 0.4+ ae"* A, F, .

(15)

The coefficient in front of the second term can be fixed
by scaling A4,. Integrating out 4, we find [the manipula-
tions ' are the same as those leading to (10)]

e“Pafn.  (16)

2
Lir="0,—ia)z|*—
2 g2| g 2 64r’a

This is just .L, with
B=—1/64r%. a7)

Associating angular parameters 6, and 65 with a and 8
as in (5), we find the inverse relation

9,,/7E=—7Z'/9p. (18)

On the other hand, we can integrate out a, in .L;5. We
find that

a,=—[(1/167)g%cnFn+iz*9,z]. (19)

Substituting in .L;,, we find

L1 =%[6u276#z+ (z19,2)21 — 2= A€,1 9,2 0,2
g 2

2
—‘L—64 S Fu F* . (20)

V2

Comparing with (9), we see that we can almost identi-
fy this Lagrangian with £, except that it contains an
extra Maxwell term F2 However, the long-distance
physics is unaffected by this Maxwell term since it has
one more derivative than the Chern-Simons term. The
long-distance behavior of the gauge potential around a
soliton is the same regardless of whether we use (9) or
(20). It is in this sense that .£, and .£, are “equivalent”
at low energies.

We see from (18) that the “Chern-Simons coefficient”

+aet A, F,, —



VOLUME 62, NUMBER 17

PHYSICAL REVIEW LETTERS

24 APRIL 1989

of the z quantum is the inverse of the Chern-Simons
coefficient of the soliton made up of z quanta. This re-
ciprocal relation is reminiscent of a relation in the
hierarchical model.'”'® Thus, if the soliton is a fermion
(8./m=1), then so is the z quantum. In general, howev-
er, they would have different statistics.

It is intriguing to note that if we regard (18) as an
iterative equation for the variable 8/x and if we restrict
6/n to lie in between — 1 and +1, the fixed points are at
6/r=0 and *1. For instance, we have the sequence
7 — ¥ — § — —1. The physical significance of this
purely mathematical result is not clear to us.

The physical properties of Ly and .£; have already
been discussed in the literature.? We now study L,
directly to see how its properties are related to those of
Ll (01' .Lo).

Actually, the properties of .L, are closely related to
those of .L,, studied in Refs. 6, 8, and 9. The results ob-
tained for .L, there also apply to .£;. On long-distance
scales, ¢*¢ is effectively constrained to be 1. Classically,
with z 'z =1 the equation of motion for a,,

L pgler . tar=—iz' 90z, @D

indicates that a, has an effective mass given by 4/8g? in
the symmetry-broken vacuum z =const. Obviously this
vacuum breaks the U(1) gauge symmetry associated
with a, and the gauge potential becomes short ranged.
As indicated in Ref. 6 the z particles behave as bosons in
this vacuum state despite the Chern-Simons term.

The short range of a, presents an apparent paradox
since we know from Ref. 2 that the soliton in Ly has
fractional statistics. In .£, the soliton corresponds to the
vortex given by

cosf(r)e’”
sinf(r) |°

where ¢ is the azimuthal angle and f(r) satisfies f(0)
=nr/2, f(e0)=0. One can easily check by calculating
n=z"zz that the vortex in L is just the soliton in .Lo.
One can also see this by noting that the toplogical charge
of the solitons in .L, (or .Ly) is given by

z(r,p) = (22)

fdzx €ij aiz*ajz=§d1[(6ijz*6jz). (23)

The right-hand side of (23) is just the winding number
characterizing the vortex of .£,. At infinity, even though
n becomes some fixed number in the soliton solution, the
z field has to twist around with the azimuthal angle ¢.
In (22), there is current flow at infinity given by
—iz"9,z— d;¢, thus generating a long-range pure-
gauge tail for a;— 9;¢. This implies that the vortex has
statistics determined by the phase of e/8#=¢ ~i/3
which is the same as that of the soliton in .£y. The phys-
ics described by (6) and (21) are thus in some sense dual
to each other: In one, flux is produced by a localized
charge density while in the other, by current flow at

infinity.

Since the cost in action of a fluctuation in the order
parameter n or z is proportional to 1/g% we expect a
quantum disordered phase (i.e., a spin liquid phase) with
the symmetry restored at large g2. We can now exploit
the equivalence of L, and .£, to learn more about this
phase. Actually, we are going to study a slightly gen-
eralized model, i.e., the CP” ! model described by a La-
grangian .L{¥ obtained from £, by allowing z to be an
N-component complex vector

21

ZN

satisfying z 'z =1 and by replacing the 2 in the first term
by N. The model discussed before corresponds to the
case N=2 (CP' model). There are topological solitons
in the CP" ™! model with z, and z, given by (22) and
z; =0 for i >2. The statistics of the soliton are again
determined by the phase e ~ /3% =878,

To study the quantum disordered state we find the
equivalent Lagrangian

LY=(N/g®) |0, —ia)z|*+Be"*a,fun, (24)

with B = —1/647%a more convenient. Applying the stan-
dard large-N expansion,'3~!> we find that when g2 > g?
=A/4r, the vacuum of the CPV ™! model is a quantum
disordered state, i.e., {(z) =0, while for weak coupling g
the vacuum breaks the SU(N) and the gauge symmetry
({z) =const). Note that the nonlinear ¢ models in 1+2
dimensions are not perturbatively renormalizable; they
are well defined only with a finite ultraviolet cutoff. The
critical coupling g. is independent of B. The Chern-
Simons term does not change the phase diagram, at least
at this approximation. We may expect that even for
small NV the theory would still exhibit a symmetry-
broken phase at small g2 and a symmetry-restored phase
at large g2. However, these two phases may be separat-
ed by other phases whose range in g2 vanish as N =oo,
(It is tempting to speculate that these phases may be
dual to the small g2 and large g2 phases in the sense de-
scribed below. The phase structure may be quite compli-
cated, perhaps not dissimilar to the one discovered by
Cardy and Rabinovici'® in another context.)

The physical properties of the quantum disordered
stat?lalrse described by the following effective Lagrang-
ian:

Leg=(N/g?) | @, —ia,)z|?
—azTz = (N/aym) (f,) 2+ Be* Paufn, (25)

where m =\/Xg 2/N is the mass of the z field, y is a con-
stant of order 1, and z is no longer subject to the con-
straint z'z=1. A Maxwell term f2 is induced dynami-
cally. If B=0 the gauge field is massive and does not
confine. (For =0 the Abelian gauge field 2+ 1 dimen-
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sions is logarithmically confining.) Thus the z particles
may appear in the physical spectrum and have fractional
statistics given by the phase e ~"/%# because in the disor-
dered state the gauge symmetry is not broken. [The
gauge-invariant Chern-Simons term produces the gauge
boson’s mass while the Maxwell term produces its kinetic
energy. At long distance, the Maxwell term is unimpor-
tant compared to the Chern-Simons terms. In contrast,
in (21) the Chern-Simons term produces the kinetic en-
ergy while gauge symmetry produces the mass.] Thus
the phase transition between the symmetry-broken phase
({(z)=0) and the quantum disordered phase ({z)=0) is a
statistics-changing phase transition. 6

We mention another intriguing but somewhat heuris-
tic picture of the quantum disordered state. Let us start
with the symmetry-broken vacuum (z)=const of the
CP"~! model and denote by ¢ the effective complex sca-
lar field creating the soliton. (Strictly speaking, ¢ should
carry an index labeling the different solitons.) At long
distances, the soliton excitations in this vacuum are de-
scribed by the following effective Lagrangian:

Ler=5 | @u+id)e |+ adFae* =M=V (o),
(26)

where M is the soliton mass. The topological current in
the CPV~! model J*~e"*9,z%9,z corresponds to
@' D*¢ in (26). ¢ has the same statistics as the soliton
given by e ~/%¢. When g2> g2 presumably M 2 becomes
negative and the symmetry-broken vacuum becomes un-
stable. The soliton field ¢ undergoes a condensation {(®)
=const and the U(1) symmetry associated with the to-
pological charge and A, is broken. The solitons disorder
the orientation of z and the soliton-condensed state may
correspond to the disordered state. The vortex in the
soliton-condensed state has a statistic e'87'@=¢ ~¥/38
which corresponds to a z quantum in the disordered
state.

We may thus have a nice dual description of the
phases in .£| here. The symmetry-broken phase has a z
condensation ({z)s0, (@) =0). The soliton corresponds
to a vortex in the z-condensed state. The quantum disor-
dered phase has a soliton condensation ({¢)=0, {z)=0).
The z quantum in the disordered phase corresponds to a
vortex in the soliton-condensed state. This duality pic-
ture is reminiscent of the hierarchy scheme!”'® in the
fractional quantum Hall effect. Strictly speaking, (26)
is not the dual theory of (24) because (26) only describes

1940

the low-energy properties of the topological current
—(i/27)€"** 8,2z 8,2, and does not include the SU(N)
currents. It is only for N=1 that (26) is strictly a dual
theory of (24).
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