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Intermittency in Inverted-Pitchfork Bifurcations of Dissipative and Conservative Maps
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%e consider intermittency in inverted-pitchfork bifurcation of a 1D dissipative map and of a 2D con-
servative map. Exact solutions to respective renormalization-group equations are constructed and scal-

ing ratios obtained. The effect of noise is considered and scaling laws in the presence of noise are de-

duced. Results for the saddle-node bifurcation in 2D area-preserving maps are presented.

PACS numbers: 05.45.+b

Intermittency in dissipative dynamical systems is one
of the more well-established routes to chaos. While in-
termittency of type 1 has been widely studied for dissi-
pative inaps undergoing saddle-node bifurcation,
which is the generic codimension-one bifurcation with ei-
genvalue + 1, no comparable investigation is to be found
pertaining to the inverted-pitchfork bifurcation. The
latter is the simplest nongeneric codimension-one bifur-
cation involving the eigenvalue +1 that displays inter-
mittency. This intermittency is expected to combine
features of type 1 with those of type-2 and type-3 inter-
mittencies, ' because in this case an unstable branch of
fixed points persists on the chaotic side of the bifurcation
point.

Intermittency in conservative systems is another area
worth investigating in view of its potential importance as
an alternative route to chaos for Hamiltonian and other
reversible systems. Intermittency in conservative maps
has recently been shown to be relevant in describing in-
homogeneous steady spatial structures in certain simple
reaction-diff'usion systems.

In this context, we study in this paper, first, a 1D dissi-
pative map and, next, a 2D area-preserving map, both
exhibiting intermittency as a consequence of inverted-
pitchfork bifurcation. We also include results on a 2D
area-preserving map undergoing the saddle-node bifurca-
tion because the latter is the generic codimension-one bi-
furcation of maps associated with eigenvalue + 1.

The 1D dissipative map

x.+) =(1+e)x„+px„'

exhibits an inverted-pitchfork bifurcation at a=0, x„=O.
Converting the phase space to a circle by identifying the
points x = ~ S, where S is a suitably chosen preassigned
quantity, numerical iterations of the map have been seen
to exhibit intermittency for small positive e, while for e
negative, the fixed point x =0 attracts orbits initiated
close to it. For sufficiently small

~
e

~
and for regions of

phase space close enough to the fixed point x =0, orbits
may be computed from the diff'erential equation approxi-

mation to (1), giving

1+
pxn'

1+
2 exp( —2en ),

pxi~n

&t& = I/e. (2c)

Solving x„ from Eq. (2a) in terms of x;„and e and
defining the resulting function f,(x;„;n) subject to the
boundary condition f,'=0{0;n)=1, we get

1/2 - r - —&/2

f,(x;n) = . (3)1+
2 exp{—2en) —1

px

For each fixed n, this solves exactly the functional equa-
tion

f, (x;n) =afq, ,(x/a;n) . (4)

[A class of exact continuous invertible solutions to
Feigenbaum's functional equation for aWO has been con-
structed by McCarthy furnishing simultaneously the
stretching factor a ( =J2) and the parameter scaling ra-
tio A. (=2) (cf. Ref. 5).] In the following we shall en-

counter the interesting fact that the continuum approxi-
mation solves exactly the renormalization-group (RG)
equation in 2D conservative maps as well. As a corollary
to Eq. (4) we infer that the duration of the laminar
phase of the intermittent orbits scales as e ' with

v(=log2/logk) =1. This 1/e scaling behavior is borne

where x;„=(x)„=0. Defining the laminar phase to corre-
spond to

~
x

~

~ xo for some suitable xo ( & S), defining
n(x;„) as the value of n in Eq. (2a) for which x„=xo,
and using a normalized white distribution for the initial
points x;„,P(x;„)= I/2xo, the average time of passage in

the laminar phase is given by &I& =f' ', nP(x—;„)dx;„;and
on substituting from (2a) we obtain

[/2-
1 ) 1

/
cot (2b)

xo(pe) ' ' xo p

For e/P»xo, Eq. (2b) gives
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out by numerical computations (for not too small e so
that the inequality e/p»xo holds true) as shown in Fig.
1. The same value of v might be obtained by other stan-
dard methods as well. Apart from the time of dura-
tion of the laminar phase, we have numerically estimated
the Lyapunov exponents for orbits initiated close to the
fixed point and have found these to be positive for small
positive e (thus signifying chaotic behavior) varying ap-
proximately as e, as they should, in the limit e 0.

Since noise is ubiquitous in numerical experiments as
well as in real systems, it is important to study the effect
of noise on intermittency. The differential equation
approximation of (I) in the presence of noise reads (with
n replaced by t),

dx/dt =ex+ px '+ gg (t),
where ((t) is taken to be a Gaussian white noise and g
measures the strength of the noise. The corresponding
Kolmogoroff equation ' describing the time evolution
of the probability distribution f(x, t) is

at t =0 satisfies

2 g'd'M/dx „+(ex;„+Px „)dM/dx;„+ 1 =0. (7)

(I) = M(x;.)dx;.2xp"

may be seen to be of the form

(I) =(I/e)F(a, e), (10)

where F(a, c)~ const for a~ 0 and F(a, e) —a 't for
a~ ~. An alternative approach involving a functional
renormalization equation in the presence of noise ' '"
leads to the same conclusions.

The 20 area-preserving maps we shall consider will be
of the form

Introducing the rescaling y =x/ Je, m =eM, a
=(g/e), we can rewrite (7) in the e-free form

2 a d m/dy; „+(y;, +Py;, )dm/dy;„+ 1 =0,

from which the average length of the laminary phase

r)f/Bt =a Bf/Bx+ —,
' b r) f/Bx

xn+ i 2xg +xg —] =f(xn), (I la)
where a =ex+px, b=g . Assuming that the laminar
phase corresponds to the region —xp ~ x ~ xp with xp
sufficiently small, we can see from above that the mean
time of passage M(x;„) for a process starting at x =x;„

where f(x„) depends on some bifurcation parameter e.
Such maps can be cast into the de Vogelare form which
has been fruitfully studied in the context of the period-
doubling route to chaos in conservative maps. ' ' We,
however, rewrite (1 la) as

&n+1

x„+i x„+f(x„)+u„
f(x.)+u„ (1 lb)

3
Ltj 10

and shall assume the x-u phase space to be a 2D torus
obtained by identifying opposite edges of a square of
predetermined side 5 in R while choosing an appropri-
ate metric which coincides locally with the Euclidean
metric. Choosing

f(x) =ex+px', (I lc)

10
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FIG. 1. Log-log plot of the average staying time (I) in the
laminar phase vs e. The mean has been taken over 2000 reen-
tries in the laminar phase for every initial value and for 20
diA'erent initial values. The acceptance gate is X0=+0.01,
5=0.10 (see text), and P =100.0. The circles indicate the
points obtained numerically. The dashed line refers to the
theoretical curve obtained from the formula (2b) and the solid
line to that from the asymptotic limit (2c).
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y, [y,(x,u), y, (x,u)] = (I/a)yg, (ax, bu ),
y, [y,(x, u), y, (x,u)l =(1/b) y~, (ax, bu),

(12a)

(121 )

we can easily verify that the map (1 lb) undergoes an
inverted-pitchfork bifurcation at @=0, (x,u) =(0,0).
For e small and negative, the origin is an elliptic fixed
point Aanked by a pair of adjacent hyperbolic fixed
points. It appears reasonable to surmise that the origin
contains an invariant neighborhood comprising Kol'o-
gorov-Arnol'd-Moser curves. ' For small positive e, on
the other hand, the origin is the only fixed point and is
hyperbolic in nature and, as expected, numerical itera-
tions of orbits initiated close enough to the origin show
intermittency involving alternating laminar and chaotic
phases. Since the map under consideration is two-
dimensional, the functional renormalization-group equa-
tion corresponding to Eq. (4) will involve two universal
functions p, (x, u) and y, (x,u) satisfying
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x
P, u

y, (x, u)

y, (x,u) (i4a)

where p, and y, are defined through the equations

dq =t (14b)
[eq'+ ,' pq" + —(u' —

t.x' —
—,
' px')] ' '

(i4c)

For given e, Eqs. (14a)-(14c) actually define a one-
parameter family of maps characterized by t. For each
fixed t, we observe that p, and y, defined by (14b) and
(14c) do indeed satisfy the RG equations (12a) and
(12b) for a particular set of values of a, b, and k. To see
this we note that (12a) and (12b) may be written from
(14a) as

where a and b are universal coordinate stretching ratios
and k is the parameter stretching ratio characterizing the
scaling. Relying on our earlier procedure involving the
role of the differential equation approximation in leading
to the exact solution to the RG equation characterizing
the transition to chaos, we consider

d x/dt =ex+px (i3)
Referring to the first and the second integrals of this
equation, we consider the transformation

Thus, here too we arrive at an exact solution of the RG
equation and obtain the scaling ratios by referring to the
solution of the differential equation approximation (13)
to the original map (lib) and (1 lc). Equation (19c)
implies that the average duration of the laminar phase
should scale as

(l) -e (20)

The effect of noise can be taken care of in this case by
including a white-noise source in Eq. (13), leading final-
ly to the Kolmogoroff equation

Bf 6f+ Sf+1 ~ b
8 f

Bt Bx Bu 2 /&
——] Br; Brk

(2i)

, eM+, aM+ 1
b a'M+1=0

8x;p Bu jp 2 rlu;„
(22)

Rescaling according to

where f=f(x, u, t), r~ =x, r2=u, and the coefficients
are a~ =u, a2=ex+Px, b~~ =b~2=0, b22=g (g being
the strength of the noise as before). The mean time of
passage M(x;„,u;„) of the process initiated at (x;„,u;„)
satisfies

x
P, P,

u

1/a 0 ax
0 1/b i' bu (is)

x =JcX, u =cU, M=rrt/JE, a=g e

we get the e-free equation

(23)

Denoting the left-hand side of this equation by (~~), we
obtain from (14b) and (14c)

2

U + (X+PX') + —a + i =0.
Bx aU 2 aV' (24)

(i6a)

dq =t. (i6b)"' [eq2+ ,' pq4+(y2 —e—4i,
' ——,

'
py,')] 't'

Assuming the laminar phase to correspond to points
within the region —xp ~ x;„~xp, —up ~ u;„~ up for
some suitably defined small xo, uo, the average (over all
initial values) time of duration of the laminar phase

Equation (14c) shows that the integrands in Eqs. (14b)
and (16b) are identical, and hence,

Xp t Qp

(l) = „„Mdx;„du;„
4xpup ~ (2Sa)

dqt=2 "" [eq'+ —,
' pq'+(u' —

t.x' —
—,
' px')]' ' (i7) may be seen from above to be of the form

On the other hand, if Eq. (1S) is to hold we must have
(l) = (1/Je)F(a, e), (2sb)

b2tt2 g~a2(2 1 pa4(4

=b2 ug2Ea2x2 1 pa4x4 (i8a)
t ag dqt=

Ja&[P&q2+Pq4+(b2u2P&a2x2Pa4x4)]1/2
(i 81 )

Equations (14c), (16a), and (17) show that (18a) and
(18b) are indeed satisfied with f(x) =~+Px' (P&0). (26)

i.e. , Je(l) is, approximately, some universal function of
g /e t . We can reasonably surmise the asymptotic form
F const for o; 0, corresponding to the scaling law
(l) —e ' in the absence of noise.

We conclude the discussion on 2D area-preserving
maps by quoting the corresponding results for the
saddle-node bifurcation. For this we consider the map
(1 lb) with

a =2,
b=4,
X =4.

(i9a)
(i91 )
(i9c)

Here also the solution to the differential equation ap-
proximation to the map furnishes an exact one-
parameter family of solutions to the RG equations (12a)
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and (12b), namely,

(27a)

dq

[eq+ —,
' pq'+(-, ' u' —ex —

—,
' px')i'" (27b)

providing us simultaneously with the scaling ratios

a=4, b =8, k =16. (28)

The scaling equation for (l) comes out in this case to
be

(l&=e ' F(g e,e). (29)
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