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Effective Hamiltonian Description of Nonequilibrium Spin Systems
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We present a method to study the existence of eAective Hamiltonians for lattice, Ising-type model sys-
tems with competing dynamics, and find explicit expressions for some relevant nonequilibrium situations.
We also define dynamical versions of the random-field and spin-glass models.
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The study of far-from-equilibrium phenomena such as
the so-called nonequilibrium phase transitions and criti-
cal phenomena is hampered nowadays by the lack of a
global consistent theory, e.g. , one which is comparable to
the powerful Gibbs ensemble theory designed to deal
with equilibrium phenomena in macroscopic systems
with a well-defined Hamiltonian. Consequently, most
basic questions in that field, such as the existence and/or
significance of steady states, fluctuations, universality
classes, etc. , still need some clarification. This (and some
other facts) motivated a series of recent studies' ' con-
cerning specific spin lattice, say, Ising-type systems
which are characterized by some more or less complex
dynamics, e.g. , dynamics governed by the action of some
external agent besides the usual thermal bath, '

by
several locally competing thermal baths, ' by competing
microscopic mechanisms such as Glauber spin Aips
and Kawasaki spin exchanges, ' etc. Those studies have
revealed that the system is forced in general to present
far-from-equilibrium steady states usually deserving
practical (in addition to theoretical) interest. Also,
many properties of those states have been clarified in

several cases. So far, however, general results remain
scarce, '" ' mainly because those studies are based on
specific methods of solution which, excluding a few exact
treatments in certain limiting conditions, ' ' also have
an approximate nature.

It thus seems interesting to investigate now all of those
nonequilibrium Ising-type systems at hand looking for
general features of nonequilibrium phenomena. We

present here some results in that direction. Namely, we

state sufficient conditions for a nonequilibrium spin sys-
tem to present "Gibbs states" with respect to some
effective, short-ranged Hamiltonian and conclude expli-
cit expressions for the latter in a number of interesting
cases. Even though we shall avoid here any general
statement about stability or uniqueness of steady states,
a problem which is better investigated at present by con-
sidering specific cases (cf. Refs. 1-12), this follows

among other consequences the existence of a large class
of nonequilibrium systems which can be analyzed, in

principle, by using the standard methods of equilibrium
theory. Those systems have a time-independent distribu-
tion P(s) a: exp[ —H(s)] for the spin configuration s,
and we find that some effective Hamiltonians [the func-
tions H(s)] have the fainiliar nearest-neighbor (NN) Is-
ing structure, i.e., they only involve sums over NN pairs
of lattice sites, while others may also contain sums over
more complex clusters of lattice sites.

Consider any infinite lattice 0 whose associated spin
configurations s= [s„=+' I, x C Af have energy H(s),
e.g.,

H= —K g s„s„,
Ix-yl =)

where the sum is over NN pairs of lattice sites. The
model systems of interest are such that the probability of
s at time t, P(s;t), evolves in time according to a Marko-
vian master equation which describes the competition be-
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tween n+m different stochastic processes:

df
(2)

Here L; represent generators for "Glauber processes, "
i.e., they cause stochastic spin Aips at site x generating
new configurations s" from s with a rate w;(s;x), and L,
are generators for "Kawasaki processes" ' in which un-
equal spins at NN sites x and y, ~

x —
y ~

=1, exchange
stochastically, thus producing s"'y from s, with a rate
w~ (s;x,y). We shall assume in the following that
w;, w~ &0 for any i, j, and s. Both generators may be
written as L ' =g„C ' (s;x) which defines the local
operators c(s;x). Moreover, each rate in Eq. (2) satisfies
a detailed balance property, i.e.,

OO k

H(s)=g g* J"' Qsyl yk yt (4)

where P* sums over every k different lattice sites,
defined as the solution of

gc; (s;x) +get~(s;x) exp [—H(s) ] =0.
When H(s) exists with either the strong property,

known that the system may evolve asymptotically to-
wards a nonequilibrium steady state with a nontrivial
dependence in general on the choices for the transition
rates w; and wj; cf. Refs. 5, 7, 10, and 12, for instance.
Our results for those nonequilibrium situations may be
summarized as follows:

Definition .Consider the object

w. (s)/w. (s') =exp[ —[H.(s') —H. (s)]J, a =i,j, (3)
Jyl ~ ~ ~

yk 0 for k & ko, (sa)
where s' refers either to s"" or to s", and H;(s) may be
of type (1) or else.

The familiar kinetic Ising model, with conserved
(nonconserved ') magnetization evolving as t ()() to-
wards the equilibrium state determined by H(s), follows
from above when L; =0 for all—i and m =1 (L~ =0 for
all j and n= 1) assuming the sufficient condition of de-
tailed balance (3) with respect to H(s). Otherwise, it is

or else the weaker one,

lim
~ I,". . . . , /I, ,

". . ',
, ~

=0,
p —+ OO

(5b)

H(s) will be called the system effective Hamiltonian
(EH).

Theorem 1.—For a dynamics consisting only of
Glauber (spin Aip) processes, i.e. , L~ =0 for all j, H—(s)
exists with

n n

Js~'''s =2 Xss, ' ' ' ss (s gw'(sys)/gs (ss';ys)
S i=1 i=1

when the following holds

(6)

QSy, ' ' '
Sask lil

w(s;y. )w(s"', yp)

w (s"',y. )w (s;yt))
=0, w=gw; (7)

for all y, and yt), aeP =1, . . . , k. The condition (7) implies a necessary symmetry for the coefficients (6).
Theorem 2.—For a dynamics consisting only of Kawasaki (spin exchange) processes, i.e., L; =0 for all i, H(s) exists

with

z;&x,y for all i when this series of equations has a solu-
tion.

Theorem 3.—For a dynamics actually combining
Glauber and Kawasaki processes as in Eq. (2), with the
Glauber rate satisfying (7), H(s) exists given by Eqs.
(4) and (5) when

w(s;x, y) w(s*;x)w(s";y) (9)w(s"')' x y) w(s;x) w(s;y)

where w(s;x, y)=p~wt(s;x, y). This corresponds to the
case where H(s) is simultaneously a solution of both
g;co(s;x)exp[ —H(s)1 =0 and g, c)~(s;x)exp[ —H(s)]
=0.

Remark. —The proof of Theorems 1-3 stating the ex-
istence of H(s) under a relatively broad range of condi-

tions, is simply a matter of algebra.
Theorem 4.—A sufficient condition for an existing

H(s) to represent an effective Hamiltonian (EH) is that
any involved transition probability w only aA'ects a finite
number of spins.

Remarks. —Theorem 4 essentially reduces the search
for an EH to that for H(s): The condition stated there
happens to hold in most familiar cases and, otherwise,
one would also need to compute H(s) before checking
conditions (5).

Theorem 5.—The cases in which Theorem 1 holds al-
ways have an EH with the original NN Ising structure
when any involved transition probability w(s;x) has the
following (familiar) properties: (1) they only depend on
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s„and s„where y=x~ i, i =1, . . . , d represent the NN
sites of site x, and (2) the following symmetry property
holds:

w(s;x) =w(s"'*;x), y=x —i, z=x+i. (10)

Remark. —Arguments to prove Theorems 4 and 5

may simply be worked out from (5).
We consider now some physically relevant examples.

The one-dimensional Ising model with several locally
competing spin flip m-echanisms, each satisfying a condi-
tion (3) with respect to H; (s) = —Ki+NNs„s„, is charac-
terized by Eq. (2) with w; (s;x) =f;(s) [1+s„tanh(h; ) ]
where —h; (s)—:—,

' s„[H;(s*)—H; (s) ] andf; represents a
function of s which is arbitrary except that f; (s)
=f;(s"). Theorems 1 and 5 then imply the existence of
an EH having the Ising structure, namely, H

Kg~5»$»+(, with

K= —,
'

ln gb;((+r;)/gb;(I —r;)
I

(notice by the way that K may be either positive or nega-
tive defined), when f(s) only depends on the NN of site
x, it satisfies (10), and

Z(a;+c;)r;/Z(a;+c;) =Zb; r;/Zb;
I l l l

[condition (7)]; we wrote here f;(s) =a;+b;s+c;s, i.e.,

a;, b;, and c;, are independent of s, s—= —,
' (s„ 1+s„+(),

and r;—=tanh(2K;).
The rates introduced originally by Glauber corre-

spond to f;(s) =a; =const (&0) above; one has then
that

K= —,
'

ln ga;((+r;)/ga;(( —r;)
l

Consider the interesting case of a system whose dynam-
ics is a competition between two mechanisms; e.g. , one
acts with a probability p as if the spin interactions were
ferromagnetic of strength K( (=J(/ktiT &0), and the
other acts with probability 1 —p as if the interactions
were antiferromagnetic of strength K2 (=Jq/ktiT(0),
a( =a& =a. It follows immediately that the EH is neces-
sarily zero (as for the infinite temperature or zero-
coupling limits) when p tanh (2K|)= (1 —p )tan (2K2),
e.g. , when K) =1K21 for p= 2 . It also follows that
K= ~ ~ when K; = ~ ~, respectively, for all i; i.e., one
may have an effective zero temperature when all the
mechanisms are either ferromagnetic or antiferromag-
netic, while the combination described before does not
allow one to reach the region K & —,

' ln[p/(1 —p)], a fact
revealing a kind of dynamic frustration

The rates introduced by Metropolis et al. are for

f=1+ —,
' [exp( —41K1)—1]s; this follows the same

EH as before with

n

K= —' ln r+ g exp(4K;) / n —r+ g exp( —4K;)
i=r+] i=]

4

for the interesting (one-dimensional) case of K; & 0
when i =1, . . . , r and K; ~ 0 when i =r+ 1, . . . , n. The
EH becomes zero now either when every mechanism acts
as if the temperature were infinite or when, in the pres-
ence of only two different values for K; as before, it is

(1 —p )/p = [1 —exp( —4K) ) ]/[1 —exp( 41K21 )];
i.e., there is only a quantitative difference with the
Glauber case f; =a. Two rates considered before in vari-
ous one-dimensional problems, which are characterized,
respectively, by f=1 —(1 —2s )tanh K (Ref. 7) and by
f=l+s [cosh(2K) —1], also have an associated EH
when used to implement the above model with competing
spin-Aip mechanisms, e.g. , the latter one has an EH with
the Ising structure and

K= —,
'

ln +exp(2K;)/+exp( —2(()
l l

Also interesting is the model in Ref. 13 where the dy-
namics consists of spin Aips performed with probability p
as if the selected spin was in contact with a heat bath at
temperature T] and with probability 1 —p as if the tem-
perature of the heat bath was Tq, define K; =J/ktiT;,
i =1,2. Assuming that model in the case of a one-
dimensional lattice, Glauber rates, and spin interchanges
(instead of spin Ilips), as it may be of some relevance to

!
study special phase-segregation processes, it follows from
Theorem 2 that an EH has the Ising structure with

tanh(2K) =ptanh(2K|)+(I —p)tanh(2K2) .

The same result follows when the dynamical processes
are spin Aips.

Our method is also useful to study a class of model
systems' ' whose definition does not involve any Hamil-
tonian but only a certain dynamical process. As an illus-
tration, consider the voter model' in a d-dimensional
space where the configuration s evolves via a spin-flip
process with rate

w(s;x) = —,
' —

4 d(1 —l)s„+sr+ —,
' l(1 —2p)s„,y"

where the sum is over y such that 1x —y= 1, 0~1& 1,
and 0~ p ~ 1. When d =1, Theorems 1 and 5 only ap-
ply for l = 1 or p = —,'; the EH for p = —,

' is H(s)
= —,

' in[!/(1 —l)]P s s„+(. When d & 1, there is only
an EH, H(s) =const, for l= l.

Concerning Theorem 3, the following holds: When,
for all i and j, w;(s;x) and wi(s;x, y) satisfy the detailed
balance condition (3) with respect to the same Hamil-
tonian, say, H(s) =H;(s) =Hi(s), then H(s) =H(s).
Further examples satisfying Eq. (9) may be worked out.
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As a final example, we define a kind of dynamical
random fte-ld model, namely, s evolves now as a conse-
quence of competing spin fiips with rates w;(s;x) depend-
ing on H;(s") H~

—(s) where, for d = 1, H; (s)
= —K+,s,s, + ~

—h;P„s„. (Notice that one may as-
sume instead a given distribution for the coupling con-
stants, K; =J;/k8T: This follows a dynamical version of
the so-called spin-glass Ising model. ) Considering the
simplest case of rates such that f; =a =const and a sym-
metric continuous distribution for the fields,
g(h) =g( —h), this follows the existence of an EH with
the Ising structure which, in the limit E 0, is
H(s) = —2KI g,s„s,+ ~ to first order in K with
I=fo dh g(h) fcosh(h)] . We shall soon report more
facts about these models.

Finally, it seems worthwhile to remark that once the
EH is known, one may construct a class of transition
probabilities driving the system to the same (nonequili-
brium) steady state. Namely, the class w (s;x)
=g~(s)exp( —

2 6H) when the order parameter is con-
served or the class w(s;x, y) =gz(s)exp( —

2 6'H) when it
is nonconserved. Here SH=H(s') —H(s) with s'=s* or
s"'", respectively, and g~ and g2 are arbitrary functions
satisfying a global detailed balance property, i.e.,
g~ (s") =g~ (s), g2(s" ")=g2(s). This may be of interest,
for instance, when looking for the most efficient dynam-
ics in a Monte Carlo study of a nonequilibrium model
with a competing dynamics such as the one defined in

(2).
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