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Glassy Behavior of a Protein
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Quasistatic and kinetic studies of the infrared CO stretch bands of carbonmonoxymyoglobin show that
proteins and glasses share essential characteristics, in particular metastability below a transition temper-
ature and relaxation processes that are nonexponential in time and non-Arrhenius in temperature.
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Proteins and glasses may appear to have little in com-
mon. Proteins are macromolecules with well defined
structures ', glasses are frozen liquids. Despite this
diA'erence, proteins and glasses share one fundamental
property: Both can assume a very large number of near-
ly isoenergetic conformational substates (CS), valleys in

the conformational energy landscape. For proteins, the
existence of CS followed from the nonexponential time
dependence of the binding of small molecules (Oq and
CO) to myoglobin at low temperatures. Supporting evi-
dence came from other experiments and from theory.
For glasses, a potential-energy surface with a large num-
ber of minima was postulated by Goldstein; for spin
glasses, the evidence came from theory. The existence
of CS in proteins and glasses raises the question as to
whether these systems share other properties. We now
describe some attributes of glasses and later show that
these are also found in proteins.

Glasses are formed when, on cooling, a liquid becomes
a structurally disordered solid. The temperature at
which the viscosity reaches 10' poise is called the glass
temperature Tg The specific heat below 1 K is approxi-
mately proportional to the temperature. Glass proper-
ties well below Tg depend on history; glasses are in a
metastable (nonequilibrium) state. Near and above Ts
the response of a glass to a mechanical or electrical per-
turbation is dominated by the a relaxation. Its relaxa-
tion function &„(t) is usually nonexponential in time and
can be parametrized by a stretched exponential, @„(t)
=exp[ —(kt) ~], or by a power law,

The average rate at temperature T is (k) =nk, (T). The
temperature dependence of k„(T) follows the Arrhenius
relation, k„(T)=4 exp[ —E/kttT], only over small tem-
perature intervals. Typical values near Tg, E = 1.6 eV,
A =10 s ', also imply that the Arrhenius relation is
inappropriate for glasses. However, k„(T) can be de-
scribed over more than 10 orders of magnitude either by
the Vogel- Tammann-Fulcher equation,

k, (T) =AvTt;exp[ —E/ka(T Tp)]

or by the relation' "
k„(T) =k o exp [ —(To/T ) ] . (3)

Both relations fit the data for glycerol (T~ = 185 K)
from 190 to 260 K. ' '

We now examine the proteins for glasslike properties.
Two are well known: Each individual protein is disor-
dered (aperiodic) and the specific heat of proteins below
1 K is glasslike. ' The other attributes, however, have
been less well explored. Here we report experiments that
verify the metastability at low temperatures, and the
nonexponential time and the non-Arrhenius temperature
dependence of the protein relaxations near 200 K in car-
bonmonoxymyoglobin (MbCO).

The folded polypeptide chain of the oxygen-storage
protein myoglobin (Mb) embeds a heme group with a
central iron atom which reversibly binds ligands such as
Oq and CO. ' Our experiments focus on the stretch
bands of CO bound to Mb which are very sensitive to
external parameters such as solvent, pH, temperature
(T), and pressure (P). ' ' We measure the stretch
bands with a Mattson Fourier transform infrared spec-
trometer. Figure 1 shows that MbCO displays at least
three diff'erent CO stretch bands, Ao, A], and A3. Fits to
Voigtian line shapes' yield the areas (A;), center fre-
quencies (v;), and linewidths (I;) of the A bands. We
also observe the rate of heat absorption via diff'erential
scanning calorimetry (DSC). The experiments fall into
two classes, quasistatic and kinetic. Quasistatic indicates
that the glasslike behavior of MbCO below a transition
temperature T g prevents attainment of thermodynamic
equilibrium. Quasistatic measurements determine the
band parameters as functions of solvent, pH, T, and P.
In the kinetic studies we observe the relaxation of the
protein after a pressure release.

Quasistatic experiments Figure 1 shows .—the ir spec-
tra from 1910 to 1990 cm ' in a 75% glycerol-water sol-
vent (3:1 by volume) at pH 6.8 with potassium phos-
phate buA'er. The sample was brought to a pressure P at
300 K. Data were then taken under constant pressure at
successively lower temperatures. The cooling rate of
0.01 K/s and waiting time of about 600 s at each temper-
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quency vp initially shifts rapidly from 1964.5 to 1964.9
cm ' and then moves measurably towards its low-
pressure value, 1966.1 cm '. The shift in vp can be de-
scribed by a relaxation function &&(t) =[vp(r) vo(~)l/
[vp(0+) —vo(~)], where t is the time after pressure
release and vp(0+) represents the center frequency im-
mediately after the rapid elastic relaxation. For vp(~)
we use two approximations, the 7 MPa value from a qua-
sistatic experiment at the same temperature and the
value obtained by extrapolation from region (iii). Figure
3 shows the relaxation function Nl(t) using the former
choice for vp(~). Nl(r) is not greatly changed with the
other choice. We interpret the relaxation characterized
by +] as FIM 1, a redistribution of substates CS within
the substate Ap.

To evaluate the data in Fig. 3, we parametrize &1(t)
by the power-law equation (1). If we further assume
that k, (T) is determined by the Arrhenius law, we ob-
tain E =1.3 eV, A =10 s '. These values are similar
to the values quoted above for the a relaxation in glasses
near Tg; they imply that the Arrhenius relation is inap-
propriate for describing FIM 1 and suggest the use of
Eq. (2) or (3). We select Eq. (3) to fit k„(T) because it
uses only two parameters and therefore provides less am-
biguous extrapolations. A fit with Eqs. (1) and (3), us-

ing a Levenberg-Marquardt algorithm to minimize g, is
shown as solid lines in Fig. 3 and yields log(kp/s )
=17.0+ 2.5 Tp =1130+80 K n =0.26+ 0.12. The
errors are conservative. We have also measured the a
relaxation in 75% glycerol and water mixture using
specific-heat spectroscopy' and obtain log(ko/s ') = l8
and Tp 1130 K. The values of kp and Tp for the pro-
tein and the solvent are remarkably close and support the
notion of a slaved-glass transition: Not only do the sol-
vent and protein exhibit comparable glass temperatures,
the a relaxation of the solvent and FIM 1 in the protein
obey nearly identical temperature dependences.

A second relaxation, now shown here, occurs between
170 and 190 K: Ai and A3 interconvert, with 2] de-
creasing and A3 increasing nonexponentially in time; the

barrier between A i and A3 is smaller than that between
Ap and the other 2 substates. '

190-210 K.—FIM 1 and the interconversion between
Al and A3 are faster than 10 s so that after pressure
release the center frequencies, the linewidths, and the ra-
tio A3/Al have the values measured quasistatically at 7
MPa. A new relaxation process is observed, the ex-
change of Ap with A i+f3. We interpret this exchange
among substates of tier 0 as a conformational change of
the entire protein and call it FIM 0. We define a re-
laxation function for FIM 0 through No(t) = [Ap(t)
—Ap(~)]/[Ao(0+) —Ap(ee)]. The area Ao(ep) is
found by extrapolation from region (iii) as indicated by
the dashed line in Fig. 2. ' &o(t), shown in Fig. 4,
displays more structure than FIM 1 and a simple power
law or stretched exponential does not fit the data well.
Nevertheless, insight is gained by fitting the data with

Eqs. (1) and (3), with the result log(ko/s ')=14, To
= 1200 K, n =0.8. The fit reproduces the general be-
havior of &o(t), but the detailed structure will require a
more elaborate model.

Our results permit four conclusions: (1) Proteins and
glasses indeed share common properties in addition to
the existence of many valleys (conformational substates)
in the energy landscape. The similarities include meta-
stability below the glass temperature and the presence of
a relaxation process governing large-scale motions (a re-
laxation in glasses, FIM 1 in proteins) which is nonex-
ponential in time and does not follow the Arrhenius law.
(2) While glasses usually show only one relaxation pro-
cess with the general characteristics of the a relaxation,
MbCO shows at least two, FIM 0 and FIM 1. FIM 0 is
slower than FIM 1 and probably describes overall
changes in the entire protein, characterized by different
CO stretch frequencies and angles between the bound
CO and the heme normal. FIM 1 describes large-scale
motions within a given substate CS . (3) The protein re-
laxation process FIM 1 is slaved to the solvent; the tran-
sition temperature T,g in the protein is close to the glass
transition of the solvent. Moreover, FIM 1 in the protein
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FIG. 3. Relaxation function N](t) for the center frequency
vp of the Ap band vs time. Solid lines are fits with Eqs. (1) and

(3) with parameters as given in the text.

FIG. 4. Relaxation function +p(r) for the area Ap vs time.
Solid lines are fits with Eqs. (1) and (3) with parameters as
given in the text.
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and the a relaxation in the solvent, at least in the case of
glycerol and water, possess remarkably similar tempera-
ture and time dependences. The hydration shell may
well play an important role in this coupling between pro-
tein and solvent. (4) FIM 0 and FIM 1 can be extra-
polated to 300 K with Eq. (3) with the result (k) = 10
s ' for FIM 0 and (k) = 10' s ' for FIM 1. While
these extrapolations are speculative, they indicate where
to look experimentally and suggest that molecular dy-
namics may be able to simulate FIM 1 but probably
cannot yet reach FIM 0.

The technique and the results presented here may be
important for both physics and biology. For physics,
proteins may well become paradigms of complex sys-
tems. The combination of the pressure jump approach
with site-specific spectroscopic observation permits site-
specific studies of relaxation phenomena in amorphous
systems. When applied to genetically engineered pro-
teins, the pressure jump technique would probe the re-
laxation of specifically designed systems. For biology,
detailed knowledge of protein motions at different time
and length scales is necessary for an understanding of
protein and enzyme reactions at the molecular level.
Slaving may be an efficient control mechanism in cells
and membranes.
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