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Stability of a Moving Hypercooled First-Order Phase Front:
Application to the Superfluid He A -B Interface
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The linear stability of a moving first-order phase boundary in the presence of hypereooling and anisot-
ropy is investigated. Applying the results to the A-8 transition leads us to conclude that in the tempera-
ture regime already explored experimentally the moving planar interface should be linearly stable; we
also find that a new theoretical prediction for the terminal velocity of the planar phase boundary is in

good quantitative agreement with experiment.
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The dynamics and instabilities of first-order phase
fronts are of interest in a variety of settings in many
areas of physics. There is a special class of first-order
phase transitions known as hypercooled, where the latent
heat released during the transition is no longer able to
reheat the boundary region back above the thermo-
dynamic transition temperature. Such is the case, for
example, for the martensitic transition in some solids, the
solid-superfluid transition in He, possibly for some
liquid-crystal phase transitions, and —probably most
spectacularly —for the A-8 transition in superfluid He.
In these cases the flow of latent heat no longer plays a
limiting role in determining the velocity of the transition,
and the well-known Mullins-Sekerka instability of a pla-
nar interface ' becomes inoperative. Consequently, some
microscopic mechanisms must be sought to explain the
speed of hypercooled transitions and the stability ques-
tion must be reexamined.

In this Letter we show that a planar, hypercooled
first-order phase front propagating in the presence of an-
isotropy is susceptible to a new type of instability that
depends entirely on the existence and strength of the an-
isotropy. These results are then used to investigate the
stability of a planar He 3 -8 interface moving at its ter-
minal velocity (with the liquid-crystal-like orbital I vec-
tor in the A phase playing the role of an anisotropy axis).

The 2 and 8 phases are symmetry unrelated,
degenerate —or nearly degenerate —bulk states of liquid

He at mK temperatures, and the dynamics of the
first-order phase transition between these two distinct
Fermi superfluids provides a novel and experimentally
accessible forum for studying nonequilibrium interface
and nucleation phenomena. Since the A~ 8 transition
can be substantially hypercooled, ' the dynamics of the
topologically stable phase boundary can be studied ex-
perimentally over a large region of undercooling. Leg-
gett and Yip (LY), Markelov, and Kopnin have ini-
tiated the theoretical study of the dynamics of the A-8
interface. LY treat the A-8 phase boundary simply as a
spatial modulation of the Cooper pair wave function and
find [for T not too close to T~tt(P), the coexistence tem-

perature] that the important friction mechanism govern-
ing the dynamics of the 2-8 interface at not too low
temperatures is the Andreev scattering of the normal ex-
citations by the moving gap distortion, while at lower
temperatures (roughly T/T, &0.5, with T, the normal-
to-superAuid second-order transition temperature) the
friction mechanism is dominated by the Cooper pair
breaking induced by the distorted, time-varying self-
consistent pair potential. The thermodynamic driving
force on the moving interface is taken to be
IsG~tt(P, T,H), the difference in Gibbs free energy den-
sity between the two bulk phases evaluated at the pres-
sure P and the temperature T & T&z of the hypercooled
A phase. ' Furthermore, we assume that all hydro-
dynamic fluxes in the bulk phases vanish (cf. Ref. 7).

LY have studied the mobility of the uniformly moving
planar interface and their calculation of the friction
coe%cient due to Andreev scattering, I A, leads to a pre-
diction for the terminal velocity, v~tt =AG~tt/I A, of the
moving interface that is in reasonable qualitative agree-
ment with the experimental results. The theory, howev-
er, underestimates viz by roughly a factor of 2, and this
discrepancy has led to the suggestion that due to the
sensitive dependence of I A on p(r) =—l(r) n(r) —where
n(r) is the local normal to the interface directed towards
the 8 phase, and r C interface —the moving planar in-
terface may be dynamically unstable and perhaps spon-
taneously roughen; the roughened interface might then
propagate with an eff'ective velocity greater than the one
predicted for the planar interface. Another possible
reason for this discrepancy is that a wrong value for the
cutoA' in a logarithmically divergent integral over quasi-
particle (QP) momenta was used in the calculation of

5,6

Since we argue below that in the currently accessible
experimental regime the moving planar interface is
linearly stable, it is unlikely that the discrepancy be-
tween theory and experiment is due to the presence of a
roughened interface. The source of the discrepancy most
likely lies in the wrong choice for the QP momentum
cutoA; and we demonstrate below that for the textural
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boundary conditions between the A and 8 phases expect-
ed for the Los Alamos (LANL) experiment a calcula-
tion of I A with the momentum cutoff properly taken into
account gives good quantitative agreement with the data.

A thermal Auctuation can give rise to a bulge in the
moving planar interface, which in the presence of anisot-
ropy may in turn lead to a friction coefficient and surface
energy that depend on position through p(r) =l n(r),
leading to the possibility that the bulge gets distorted
and continues to grow. [We assume that the anisotropy I
field is not only stationary, but also uniform in space (see
below). ] This type of growth is opposed by the action of
an effective surface tension, which (usually) tends to cor-
ral any bulges in the interface. The stability of the pla-
nar interface will clearly depend in some way on a com-
petition between the magnitude of this effective surface
tension and how rapidly I varies with p.

We treat the interface in the thin-wall approxima-
tion, which means that the fiuctuations about the pla-
nar interface are assumed to have a characteristic wave-
length k»d(T)—:cg(T), where d is the interface width,
g(T) is the temperature-dependent coherence length,
and c is a constant —5-10. ' In this approximation,
the interface can be described by a surface z =q(x,y;t)
(collective coordinate description), with the z axis taken
along the tube and z measured from some reference
plane fixed to the cell walls to some reference point on
the interface.

Alternatively, the motion of the interface can be de-
scribed by a differential displacement vector field u(r, t).
At time t the interface is taken to consist of the locus of
points S(t) =fr: r(x,y;t) =(x,y, q(x,y;t))]. After an
infinitesimal time interval dt a point r on the interface
will undergo a differential displacement u(r) =uti(r)
normal to the interface at r to a new point r' with
u(r, t) =r' —r and r' E S(t+dt); only perpendicular dis-
placements are physical, since tangential motions simply
give rise to a physically unimportant reparametrization

of the interface (cf. Ref. 11).
To consider perturbations about a reference planar in-

terface moving at its terminal velocity v~~, we assume
that at time t =0 the interface differs only slightly from
a steadily moving plane with normal n = —i. The initial
interface surface is described by z=wp(x, y)—:q(x, y;
t =0) [with i Vt2iwp(x, y) i

&( I where V(q) —= (8., 8, )].
For t & 0 the position of the interface is given by
z =q(q, y;t) =v~tit+w(x, y;t) with w considered to be a
small perturbation.

An effective equation of motion for q(x, y;t) can be
obtained using the Lagrangian theory of two-dimen-
sional membranes. ' The surface z =q(x,y;t) is defined
for (x,y) C Z, the base of the tube, and the 8 phase oc-
cupies the region with z (q(x,y;t). In the following
analysis edge effects due to the walls of the tube will be
entirely neglected': Z is taken to be infinite, and the
solutions to the equation of motion need only remain
bounded at infinity. The Lagrangian density X=X(x,
y;q, 8,q, 8,q, 8,q) (with a =x,y) takes the form'

X = —,
' M*(dS/dA)(8, u[q])

—o» [q] (ds/dW)+ q ~G»,
where dS = [1+(Vt2&q) ] 't dA (with dA =dx dy) is the
actual area element at the point r on the surface, M* [q]
is the effective areal mass density for the interface, u[q]
is taken as a functional of q, and o»[q] is the surface
energy density. To account for energy dissipation, we in-
troduce a Rayleigh dissipation function

9 [q] = —,
' [1+(V~2)q) ] 't I [q] (8,ulql )

which in general is a functional of q and is defined so
that the total rate of energy dissipation is dE/dt
= —2ff~dA P[q].

The requirement that the variation of the action about
the actual motion vanish implies that q(x,y;t) must
satisfy the following generalized Euler-Lagrange equa-
tion:

8
8(8,q)

+8.
8(82q) 8(8.q)

8X+ 8P
8q 8(8 q)

(summation convention with a =x,y).
For a static planar interface the value of the surface

energy density a~~ depends in a complicated way on the
textural boundary conditions between the A and 8
phases. ' ' "' When the interface is moving it is a good
approximation for all but the slowest speeds to complete-
ly neglect the dynamics of the l vector (due to the orbital
viscosity) and assume that the A-phase l texture remains
frozen in its initial (and not necessarily minimum ener-

gy) configuration. The response of the other interfa-
cial textural degrees of freedom —connected with the
other symmetry-breaking variables in the bulk phases—to the passage of the interface is an involved problem,
and it is not possible to treat this topic in depth here';

instead, we make the plausible simplifying assumption
that at each point r on the moving interface the other in-
terfacial degrees of freedom adjust themselves adiabati-
cally to minimize the surface energy density for the local
value of p(r) =n(r) l (adiabaticity assumption). It is
then plausible (cf. Ref. 14) that aze should depend on q
only through p(r) [via n(r), see below] and the extrinsic
curvature K(r), so that for a slightly curved interface'

oge[p(r), rc(r)] = crp[1+a8p+ —,
' b(bp) + —,

' c(vd) ],
where oo is the surface energy density of the moving
reference planar interface (for which p =pp= l'z),
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Bp(r) =p(r) —po, a = (I/no)(r)ops/()„)o, b = (I/a~o)
x (t) ops/t)p )o, and c are constants presumably of order
unity, and x is given by

rc(r) =Ir(x,y) =V(2) I;(I+ I V(2)q I
') ' 'V(»q(x y) t .

Using

n(r) =fi(x,y) =(B„q,B~q, —1)(1+ I V(2)q I )

for the normal, we find

8p(x, y) =I.V(»q(x, y;t)+ —,
' l, (V( 2q))'.

We assume that for an interface only weakly distorted
from a plane the friction coefficient I (p ) can be expand-
ed in powers of 6p(r); keeping terms up to first order
yields I (p) = I o+I os(r), where I o=l (po) and I o

=(ar/Bp)„=„, (thus v~~ =AG, e/I o).
A linear equation of motion for small perturbations

w(x, y;t) about a planar interface moving steadily at its
terminal velocity vz~ can be derived using a quadratic
approximation to L and approximating the Rayleigh dis-
sipation function by P = —,

' I (p) t.t)tq(x, y;t)] with
I (p(r)) expanded to first order in 8'p(r); using Eq. (1)
we find

Mo t), w+I o|),w —oob(l V(2)) w —croll+al, )V(2)w+vwaI o(l. V(2))w+cd aoV(2)w =0. (2)

This equation should be valid for perturbations with
wave vectors k =

I k I in the range k;„~k ~ k
«d ', where k;„' —diameter of the experimental tube.

For a perturbation with wave vector k =kk, we first
define two crucial quantities, f(k) = I + b (1 k) + a. l,
and

which play the roles of dimensionless restoring (due to
surface tension) and destabilizing (due to anisotropy)
forces (normalized by k cro) on the perturbation and
therefore determine the stability properties of the moving
planar interface.

Then by Fourier analyzing Eq. (2) we arrive, after
some work, at our principal (and surprisingly simple)
conclusion that the steadily moving planar interface is
linearly stable if and only if A(k) ~ f(k) V k. '

To estimate the value of A for the A -8 phase front in

the currently accessible region of the (P, T) phase dia-
gram, we need an expression for the friction coefficient
I A in the temperature range where the Andreev friction
mechanism dominates. At low temperatures only quasi-
particles in the A phase with momenta in small cones
around + / in QP momentum space have low enough en-

ergy to be thermally excited, and a simple low-

temperature form for the Andreev friction coe%cient,
valid when T«As(T) (the B-phase energy gap), can be
found from the general expression in Ref. 5 (see Ref. 13
for details). Here we use the simple low-T forms for I A,

which turn out to be reasonably good approximations for
all T & T~s (at least near melting pressure), although
they slightly overestimate I A (and therefore lead to an
underestimate for v~e, see Fig. I) at higher T.

Using these "low-T" forms for I A, together with both
the experimentally measured and the theoretically es-
timated values for v~~, and the rough estimate Mo
—cro/vF for the inertial mass (which is due to the intrin-
sic inertia associated with the time-dependent deforma-
tion of the He order parameter), we can estimate A

(where vF is the Fermi velocity). Furthermore, under
the adiabaticity assumption, it can be shown that f—I
(i.e. , f+I) ()'k. ' In the evaluation of I A (and there-
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FIG. 1. Terminal velocity viz of the planar phase boundary
as a function of T/Tzs(P). Square data points (from Ref. 2)
are at pressure P = 33.6 bars and field H = 100 G. Solid and
dotted curves are the "low-T" results for p =0 and 1 at P = 34
bars and H =0. Dashed curve is the full LY result (Ref. 5) for

p =1 at melting pressure and H=O. Inset: Circular data point
(from Ref. lg) is for P = 30 bars. [For the theoretical curves
hG~s is taken from experiment (cf. Refs. 5 and 6).]

t

fore A) as a function of p it is necessary to consider two
regions separated by a small cutoff p, : (1) for
p» p, —(A)s/eF) ' —0.05, (where eF —Fermi energy
—1 K) and low T, I A is independent of the cutoff, and
we find A«1, implying that the A-8 interface is always
stable. This conclusion becomes increasingly marginal at
low T (T/T, & 0.6) for p~ p, as v~~/vF increases rap-
idly in the Andreev regime (before saturating in the
pair-breaking regime). The above cutoff, which should
be valid for roughly T/T~~ )0.6 at melting pressure, '

is intrinsic to the Andreev friction mechanism and can be
determined by inspecting the scattering solutions to the
Bogoliubov-de Gennes equations in the presence of a
static A-B boundary. (The cutoff arises because the
condition for Andreev reflection cannot be satisfied for
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QP momenta too close to the plane of the interface. ' )
(2) For p =0 (which, due to the influence of the cell
walls and the applied magnetic field on the I vector,
should hold in the LANL experiments ) and low T,
I A(p =0) depends logarithmically on the inverse of the
cutoff p.„and we find I A(p =0) =0; since A is then zero
the interface is again linearly stable. Interestingly
enough, there are already experimental indications that
something bizarre is going on at very low T (near the
crossover to the pair-breaking regime, which is outside
the scope of our analysis), ' and one possible explanation
is that the interface has roughened.

We can see (Fig. 1) that the low-T forms for I A are
really quite good by comparing our low-T prediction for
the terminal velocity v&z of the planar interface at p =1
with the results obtained by LY using their full expres-
sion for I"A (which for p =1 should be insensitive to the
incorrect cutoff' in QP momentum space used in Ref. 5
since the important QP states are clustered far from the
cutoff region). If we assume that the low-T result for
v&8 evaluated at p =0 slightly underestimates viz in the
same way it does at p=l then —except for the data
point at T/T~tt =0.77, where v~tt seems anomalously
large —our adjusted theoretical prediction for Uzz at
p =0 is in good quantitative agreement with experiment
(with essentially no adjustable parameters); lower T-
data are desirable to check this agreement more careful-
ly.

In conclusion, we have found that due to the presence
of anisotropy the planar A-B interface is susceptible to a
linear instability, but for the range of relevant parame-
ters explored so far the interface is within the instability
threshold. In addition, the good agreement between our
new theoretical prediction for U~~ and experiment pro-
vides convincing (albeit indirect) quantitative evidence
for the existence of the subtle Andreev scattering pro-
cesses in He. Finally, perhaps the new dynamical insta-
bility discussed above can be observed in other systems
(e.g. , the nematic-isotropic interface of a liquid crystal,
see Ref. 17).

The author wishes to thank A. J. Leggett for many
helpful discussions and for critically reading the
manuscript; thanks also to T. A. Issaevitch and S. T. P.
Boyd for useful discussions. This work was partially sup-
ported by NSF Grants No. DMR 83-15550 and No.
DMR 86-12860.

'J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).
2See, e.g. , A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975); J.

C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).
S. Buchanan, G. Swift, and J. C. Wheatley, Phys. Rev.

Lett. 57, 341 (1986).
4A. J. Leggett, Phys. Rev. Lett. 53, 1096 (1984).
sS. Yip and A. J. Leggett, Phys. Rev. Lett. 57, 345 (1986);

S. Yip, Ph. D thesis, University of Illinois, 1986 (unpublished).
6A. J. Leggett and S. Yip, in Superfiuid 'He, edited by L. P.

Pitaevskii and W. P. Halperin (North-Holland, Amsterdam,
1989).

7A. V. Markelov, Pis'ma Zh. Eksp. Teor. Fiz. 42, 151 (1985)
[JETP Lett. 42, 186 (1985)]; Zh. Eksp. Teor. Fiz. 92, 1714
(1987) [Sov. Phys. JETP 65, 962 (1987)].

sN. B. Kopnin, Zh. Eksp. Teor. Fiz. 92, 2106 (1987) [Sov.
Phys. JETP 65, 1187 (1987)].

9N. Schopohl, Phys. Rev. Lett. 58, 1664 (1987).
'oM. M. Salomaa, J. Phys. C 21, 4425 (1988).
''D. Forster, Europhys. Lett. 4, 65 (1987).
' See, e.g. , A. Fetter and J. D. Walecka, Theoretical

Mechanics of Particles and Continua (McGraw-Hill, New
York, 1980), p. 271.

'3J. P. Palmeri (unpublished); Ph. D. thesis, University of Illi-
nois (unpublished).

' R. Kaul and H. Kleinert, J. Low Temp. Phys. 38, 539
(1980).

'5D. OsheroA and M. C. Cross, Phys. Rev. Lett. 38, 906
(1977).

'6S. T. P. Boyd (private communication).
' P. Oswald, J. Bechhoefer, and A. Libchaber, Phys. Rev.

Lett. 58, 2318 (1987).
'~S. T. P. Boyd and G. W. Swift, Bull. Am. Phys. Soc. 33,

408 (1988).

1875


