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Critical Thermal Boundary Resistance of ‘He near T
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We present a unified description of the thermal boundary resistance Rx (Kapitza resistance) of “He
above and below T3. Using Dirichlet boundary conditions for the order parameter we determine the crit-
ical temperature dependence of Rx without an adjustment of parameters. Good agreement with experi-
mental data below T3 is found. Our local renormalization-group treatment goes beyond the conventional
hydrodynamic approach and predicts the nonuniversal pressure dependence of Rk along the A line.

PACS numbers: 64.60.Ht, 67.40.Hf, 67.40.Pm

Surface critical behavior has been the subject of in-
tense theoretical studies in the past decade.! These stud-
ies were concerned primarily with static properties, apart
from a few cases where the relaxational dynamics was
investigated. Very little is known about the critical dy-
namics at surfaces in the presence of reversible cou-
plings. The latter are of particular interest as they are
expected to produce divergent surface transport coeffi-
cients which may be accessible to experimental observa-
tion. In this Letter we present the first renormalization-
group (RG) study of such a divergent surface transport
coeflicient.

A well suited candidate for this study is the thermal
boundary resistance (Kapitza resistance?) between
superfluid “He and a solid wall. Favorable experimental
conditions such as the exact vanishing of the bulk resis-
tance and the advances in high-resolution thermometry
have made possible the detection of a singular contribu-
tion Ry to the total boundary resistance R below T,
which was represented as®

R¥'=R2+Rg, 1)

with a noncritical background term R2. Also above T3,
deviations from the predicted behavior of the bulk
thermal conductivity Ar have been observed*® which
may be attributed to a boundary resistance. Analogous
phenomena are expected to exist for other superfluids
(*He and superconductors). >

The present status of the theory of Rk is rather unsa-
tisfactory. While no theory exists for Rx above T there
have been three different®® predictions for the critical
exponent of Rgx below T, without a quantitative speci-
fication of the amplitude of Rk, although a definite
identification of this amplitude is indispensible for a con-
clusive test of the predicted exponents. As a fundamen-
tal criticism of the hydrodynamic approach®® we note
that it breaks down when applied to phenomena on
length scales smaller than the correlation length £. This
casts serious doubt on the quantitative reliability of the
corresponding results for Rx (Refs. 6-8) since the main
contribution to Rk arises within a boundary layer of
thickness £. This point is of general importance to dy-

namic critical phenomena near surfaces.

In the following we shall present a RG calculation of
Rk both below and above T, that properly treats spatial
variations on length scales smaller than £ and identifies
the amplitude of Rk in terms of known bulk parameters.
We shall determine Rg via the temperature variations
due to a small heat current Qo applied to *He in half-
space geometry. We start from the coupled Langevin
equations for the complex order parameter y, and the
entropy variable mo of model F (Ref. 10) in the presence
of an external heat source Wy:

SH SH
jo=— 2T +i +0,, 2
Vo 05!//6“ igovo smq T Ov )
o =roV2 2L 4+ gV i+ Wo+6,, , (3)
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H= [’ rolyol 2+ + | Vyo| 2+iio | wol *
+ Fmé+yomolwol?, (4)

with j0=Im(ydVyo). The *He liquid is assumed to oc-
cupy the half space z > 0, with the plane z =0 represent-
ing the solid surface. We assume Dirichlet boundary
conditions (Dbc), i.e., vanishing o for z <0, which ap-
pears to be fairly realistic.!! Within model F we may
interpret SH/6mo=mo+ yo| wo| ’=6To as the local
temperature deviation from the equilibrium temperature.
Hence, we assume 67 and mg to be continuous at z =0.
For simplicity we consider Eq. (3) to be valid also for
z<0.

A stationary heat current is produced by a heat source
Wo(z) =Q06(z) in the plane z=0 and by a sink at
z=o0, For Qo> 0 there exists a temperature profile
(6To)(z) which serves to define

Rk = lim {_a—[<6T0>(0)—(6T0>(z)]Qo=o-Rb(z)}.
TN

z—> 00

(5)

Here R?(z) denotes the bulk thermal resistance of a sys-
tem of length z (with periodic bc). Below T, we have
R’=0 while above T, R?(z)~z/\r, where Ar is the
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bulk thermal conductivity. From the stationary solution
of the averaged Eq. (3) we obtain the representation

Rk=§—2f0 dz ago [GO(2) — (O ()] g,=0,  (6)
which is valid above and below T and reflects the physi-
cal origin of Rk: It results from the suppression of the
superfluid current {j2)(z) within a boundary layer which
is expected to be of the order of the correlation length.

We shall calculate Rx by means of the field-theoretic
RG approach'? within the minimal subtraction scheme.
The renormalized quantities of interest are introduced
as!? m=Z,,,_l/2m0 and A5=2Z,; 'A7. On the basis of a
dissipation-fluctuation theorem and an explicit one-loop
calculation above 7, we have found that the Kapitza
resistance is renormalized as

This result agrees with the expectation that Dbc do not
introduce new Z factors.' Dimensional analysis leads to
the representation Rx = (uA%}) ~'A4, where u =¢&; ! is the
reference wave number of the renormalized theory. The
dimensionless amplitude A4 depends on the various di-
mensionless parameters w, f, v, u, and r/u?, which are
the renormalized counterparts of wo=To/Ao, fo=gd/
Toko, 70, 4o=iio— + 74, and ro. Together with Eq. (7)
this implies, after integration of the RG equation for Rk,
that Rk can be represented as

- E(t+) +
Rk ———lT(ti)A (8)

both above and below T,. Here &(¢) ~&ot ~¥ denotes the
correlation length above T, with t=(T —T,)/T, and
t+=t, t—=—2¢t for T>0 and ¢ <0, respectively. This
settles the question of the type of divergence of Rk,
which turns out to be rather weak. All the more impor-
tant is a calculation of the amplitudes 4 ¥ and 4 ~ for a
conclusive comparison with experimental data in a limit-
ed temperature range. In lowest order we obtain
A~ =A7(8()) where 6(]) depends on the effective
model-F parameters u (1), £(1), and w(l) =w'(]) +iw" ()
according to

=1
AL, w"(1)?
oD =20 [1+ ()2 ] : )

The flow parameter / ~(—2¢)" introduces a weak tem-
perature dependence of A ~(8(/)). The calculation of
the 6 dependence of 4 ~(8) is parallel to that of Ref. 7,
which uses the representation (5) and leads to
r I'la-
A (0)= (@ )lMa-) (10)
I'a++3)'a-+ %)

with a+ =0+ & +(62+ % )2 Equations (8)-(10)
have the same structure as the result obtained by the hy-
drodynamic approach where effective (critical) bulk pa-

rameters have been substituted in a phenomenological
way.%® Unlike the hydrodynamic result, however, which
contains the thermal conductivity x below T as an un-
known quantity,® our result, Eqs (8)-(10), is expressed
entirely in terms of parameters that are well known from
bulk theory'? and experiment'* above T;. This permits
testing of the “hydrodynamic” result, Egs. (8)-(10), by
means of a comparison with the measured total resis-
tance,> Eq. (1) after an adjustment of RZ(=0.434
cm?K/W). The discrepancy between the dashed line
and the data in Fig. 1 clearly reveals the inadequacy of
both the hydrodynamic approach and the RG approxi-
mation that has led to Eqgs. (9) and (10).

In the following we propose a basic improvement of
the theory by focusing the RG treatment on the spatially
varying response function

So(z,ro)Ei—z aiQoujfxz)]Qﬁo, (1
which determines Rk via the integral representation (6).
It is natural to expect that such a local treatment takes
into account more efficiently the short-distance proper-
ties within finite order of renormalized perturbation
theory. From the bulk relation A7 ' =1¢ '+.5%oo,r¢) it
follows that S° needs multiplicative and additive renor-
malizations. Accordingly, we introduce the renormalized
response function

S(z,r) =Z,[8%z,ro) —S°C,rep)l, (12)

where r =2, 'rg and rop =Z,ry, with r, =p? for T> T,
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FIG. 1. Kapitza resistance R, Eq. (1), vs (T5\—T)/Th.
The solid line is our theoretical result [Eqs. (13)-(16)]; the
dashed line represents the ‘“hydrodynamic” result [Egs.
(8)-(10)]; both lines and the data (Ref. 3) are for saturated
vapor pressure. The dotted line is our prediction for 28 bars
according to Egs. (13)-(16). The arrow indicates the temper-
ature at which R2 has been adjusted.
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and r, = —u?/2 for T < T,. The subtraction at the non-
critical temperature rg, is taken to be z dependent in or-
der to preserve the Dbc for S, i.e., S(0,r) =0. Integra-
tion of the (inhomogeneous) RG equation for S(z,r)
and substitution into Eq. (6) leads to Rx =Rk (r¢) in the
form

Ry (ro) =Rg(ros) +R% , (13)

where R =Ri[r,u,v] is represented as

1
Ri=J,. 1'1' (1) [ S g vl R
G =—1r = Rilry. 0] . D)
arb u=ul'

Here we have employed the usual RG functions'?

& =Wa,nZ; "o, j=m,r, with v(}) '=2—-¢(u())
and have abbreviated the model-F parameters (u,y,w,f)
by v. The flow parameter /+ is identified as
r(1+)=p%% and —2r(I-)=p%l% above and below T3,
respectively, which implies / + ~t%. To leading order
we find below T

A~ (6"))
2l

where A7[I'(t-)]=Ar(tL) is taken at the appropriate
temperature above T,. Equations (14)-(16) fully in-
clude the nonuniversal critical effects which are relevant
in dynamics and also in statics at higher pressure.'> The
critical exponent of Eq. (14)-(16) agrees with that of
Eq. (8), as expected. The effective amplitude, however,
differs significantly and leads to strikingly improved
agreement with the data® [solid line in Fig. 1; an adjust-
ment of the background term Rg(ros)+RE=0.439
cm?K/W is understood].

The reason for this improvement can be elucidated by
rederiving Egs. (8)-(10) via a different renormalization
of S% instead of Eq. (12) one may perform a z-
independent (bulk) subtraction which suffices to cancel
just the pole terms (in e =4 —d) for z > 0. This replaces
Eq. (12) by

Si,r)=2Z,[8%,r0)—2""(Z,; ' =21, a7n

where A =2Z,%¢. Substitution of Eq. (17) into Eq. (6)
leads to Eq. (7) and, in lowest order of perturbation the-
ory, indeed reproduces Egs. (8)-(10). From
5°(0,r9) =0 it follows that lim,_.¢S(z,7)=0; hence
S(z,r) does not satisfy the Dbc, in contrast to S(z,r)
defined by Eq. (12). In fact, S(z,r) is not well behaved
in the limit z— 0 and e— 0, contrary to S(z,r). This
clearly indicates that the z-dependent subtraction (12) is
better adapted to Dbc.

In order to further support our result given in Egs.
(13)-(16) we briefly discuss a similar static problem re-

G = (16)
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lated to the surface energy density

Eo= . dzled) () — (o) ()] (18)

for an n-component order parameter ¢, (with Dbc at
z=0). If we use a renormalization of {(¢8)(z) analogous
to Eq. (17) we arrive at a renormalized quantity Ej
which is identical with the result of Goldschmidt and
Jasnow (GJ).'¢ Their expression is finite in d =4 but ex-
hibits a pole ~(d—3) "' in d =3 as noted recently.'’
This is an artifact that has not been discussed in the
literature although it raises serious doubt concerning the
quantitative applicability of the GJ result to d =3. Here
we point out that the d =3 pole is a spurious result which
can be avoided by a local renormalization analogous to
Eq. (12), as introduced by Dietrich and Diehl.!® Using
their renormalization of (¢4)(z) we obtain the renormal-
ized energy density in two-loop order (for ¢ > 0, t— 0),
El= =P ) ———— ' P+ A +p)r/u?=pll1 +2(n+2)u*],
(19)

where ¢ is a geometric factor and p=a+v. In Eq. (19)
the pole (d—3) ™! of GJ is replaced by (d—3+¢F) !
=v/(1 —p) which renders E! finite in d=3. Further
evidence in favor of the local renormalization scheme
can be obtained from a comparison between the corre-
sponding surface heat capacities, C; and C;. We find in
two-loop order, apart from geometric prefactors,

Cooct P[1+8(n+2)u*l, (20)
Clect 7 P[14+2(n+2)u*]. 21)

We see that the O(u™*) correction in Eq. (20) is prohibi-
tively large (of the order of 1) in d =3, in contrast to Eq.
(21). These examples demonstrate rather convincingly
that our result, Egs. (13)-(16), is based on a more reli-
able approximation than the hydrodynamiclike expres-
sion, Egs. (8)-(10).

As a further test of our theory we propose to measure
the pressure dependence of Rk along the A line. After
adjustment of a pressure-dependent background term Rg
our result provides quantitative predictions for all pres-
sures. As an example we present our prediction for 28
bars as the dotted line in Fig. 1 (for simplicity we have
taken the saturated-vapor-pressure value of R2).

Finally, we turn to the critical Kapitza resistance
above T). It results solely from fluctuations that cannot
be treated by a hydrodynamic approach at all. In one-
loop order we find Egs. (13)-(15) with

AT (xU),y "))
7 1 )77

G = (22)

A xy)=+x "+ Fax?— Fx+ s xyInl(+yp)/x],

23)
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where x = |w'/w| and y =|w"/w|. It would be interest-
ing to perform a quantitative comparison between this
result and experimental data for Rx above 7T,. Unfor-
tunately, a direct measurement of R above T; does not
seem possible because of the finite bulk resistance R;.
The presently available data for the thermal conductivity
exhibit size-dependent effects whose interpretation is as
yet controversial.*> A preliminary analysis indicates that
the measured deviations from the expected bulk behavior
are much larger than suggested by the surface effect pre-
dicted by Eqs. (13)-(15), (22), and (23). More accu-
rate experimental information would be highly desirable.

In conclusion, we have presented a unified description
of the thermal boundary resistance above and below the
A transition of “He and have explained the recently
detected singular temperature dependence below 73. An
extension of the theory to the nonlinear regime at finite
heat current>'® as well as to the critical Kapitza resis-
tance in other superfluids would be of considerable in-
terest.
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