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Role of Shear in the Isotropic-to-Lamellar Transition
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In the isotropic-to-lamellar transition, nonlinear fluctuation terms lower the transition temperature T:,

and drive the transition first order. Here we show that steady shear, by suppressing the fluctuations,
raises r„ in a certain temperature range the lamellar phase can be induced by applying shear. A study
of the eflective potential indicates that the transition remains first order, though becoming very weak at
high shear rate. We argue heuristically that the lamellar ordering first occurs with wave vector normal
to both the velocity and the velocity gradient.

PACS numbers: 64.60.Ht, 47.20.Hw, 61.25.Hq, 64.70.Md

In many systems, such as lyotropic liquid crystals, '
microemulsions, and block copolymers, ' a transition is
observed from a uniform isotropic state to a lamellar
(striped) phase upon lowering of temperature. In this
Letter we consider how such a transition is influenced by
the imposition of a shear flow. Preliminary experimental
studies of the isotropic-lamellar (I-L) transition in

bilayer-forming surfactant solutions (such as sodium-
dodecyl-sulfate-water-pentanol bilayers in dodecane')
indicate a strong eA'ect of shear. In some cases, even
gentle shaking of a test tube containing an isotropic
phase induces a birefringent state, presumably lamellar,
which persists for several seconds. '

Our starting point for discussing these phenomena is
the following Landau-Ginzburg Hamiltonian, which de-
scribes the ordering of a scalar field p with reflection
symmetry, at finite wave number ko (with kqT=1):

H(p) =
2 g[z+(k —ko) ]y(k)p( —k)

+ (~/4I) g Ip(k)lp(k')Ip(k")y(k"'), (1)

where k, k', etc. , denote wave vectors; k =
~
k ~; and z is a

temperaturelike control parameter. At the level of
mean-field theory (whereby a single configuration of the
order parameter p is chosen so as to minimize 0), this
model exhibits a second-order I-L transition at z=0.
However, mean-field theory is inadequate because of
large fluctuation effects associated with the degeneracy
in the possible orientations of the ordered state; this gives
a large phase volume (the spherical shell k=ko in k
space) for fluctuations in the isotropic phase. Bra-
zovskii studied the nonlinear coupling to fluctuations,
using a self-consistent (Hartree) approach. Introducing
the effective potential & (the Legendre transform of the
free energy), he found Eqs. (2)-(4) for the field variable
2h —=8%/Ba conjugate to a lamellar state p =2a cos(q r)

of amplitude 2a and wave vector q on the critical shell:

h =r(a)a ——,
' Xa, r(a) =z+cr+Xa (2)

a(r) =(X/2)„g(k)d k/(2x)

g(k) ' =r+(k —ko)

(3)

(4)

Here g(k) =—(p(k)p( —k)) is the two-point correlation
function for fluctuations; its behavior in the isotropic
phase (a =0) is found self-consistently from Eqs. (3) and
(4). This gives r(0) =z+akr(0) ', where a =—ko/4x;
hence r(0) ~ 0 for all finite z and the spinodal point
[r(0) =0] is suppressed to z= —~. Correspondingly,
the transition must be first order; analysis of Eqs.
(2)-(4) shows it to occur at z=z, = —(ak), with an
amplitude a, =a '~ X '~ . For weak nonlinearity (k
«a'~ ) the Hartree theory is self-consistent near the
transition, failing only at lower temperatures (z( zH

X'"a—"«z )
The Landau-Ginzburg Hamiltonian of Eq. (1) is thus

appropriate to describe a weakly first-order transition to
lamellar order, in systems with no separate tendency to-
wards nematic or cubic order (which permits us to
neglect an orientational order parameter and terms of
order p, respectively). Its application to block copoly-
mers has been well developed. ' Certain lyotropic sys-
tems of dilute bilayer-forming surfactants are also
characterized' by a weakly first-order transition between
an isotropic (spongelike) and a lamellar phase, with no
indication of an intervening "nematic" phase. Thus, we
may adopt Eq. (1) for these lyotropics as well. '

In what follows, we consider the effect of shear flow on
fluctuations, and study the resulting changes to the I-L
transition. The methods used here are similar to those of
Onuki and Kawasaki and Fredrickson and Larson.
Anticipating a self-consistent treatment of the quartic
terms in H (as we give below) we may write a linearized
convective Fokker-Planck equation ' for the steady-state
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probability distribution P[p(k)],

f% OO

g(k) =p„dt exp —p jr+ fk(t') —ko] jdt', (6a)

k(t ) =k+—(ky+Dt k /2) +k

Thus, the mean-square amplitude g(k) at time zero
("now") arises as a superposition of random Fourier
components injected at earlier times —t, and convected
to the present wave vector k, each convoluted with a
memory kernel that causes decay at a rate p r) @/
8&(k')8&( —k') with k' the convected wave vector at
some intermediate time t'.

The imposition of flow completely changes the fluctua-
tion spectrum. (This fact was noted previously in the
block-copolymer context, but without discussion of its
possible influence on the I-L transition. ) For example,
as r~0, instead of diverging on a shell (k =ko) the
fluctuations now diverge only on a circle, where the shell
intersects k„=o. To find the nature of the singularity,
we study the typical lifetime g(k) =g(k)/p of a random
Fourier component injected at a point k near the shell.
From (6) we see that

t g(k)
p tr+ [k (t') —ko] 'jdt'=1 . (7)

For r small but finite and D~ 0, we obtain on expanding
(7)

g(k)/p =g(k) = go [1 —bp (k —ko)f(k) (ii

cpf(—k) 'g() + ], (8)
where $0(k) ' =p[r+ (k —ko) ], f(k) =Dk„k~/ko, and

b, c are constants of order unity. Integrating to find the
total fiuctuation term o [Eq. (3)], we obtain to leading
order in D

o(r, D) —o(r, o) —(~ z, ~/r) (D/D*) z, , (9)

where D* =Xpa' and ~, denotes the transition temper-
ature in the absence of shear. A second interesting limit
is for r ~ 0 at finite D; in this case we find from (7) (for
k=ko with k small)

p[r+ [bDk„k~g/ko+c(Dk g) /kp

d(Dk ky g) /ko ] j g 1 (lo)

p + [r + (k —ko) ]p(k) Dk—8

and take the second moment to obtain an equation for
~(k) =(y(k) q(-k)), :

[r+(k —ko) ]g(k) —(D/2p)k jg(k)/Bk =1. (Sb)

Here the imposed flow velocity in laboratory coordinates
(x,y, z) is (Dy, o,o); p is an Onsager coefficient which
can be presumed constant in the vicinity of k =ko. For
simplicity we shall also ignore any dependence of p on
shear rate D or temperature. The solution to (Sb) is
then

q(k) P[y(k)] =O,
ky

(Sa)

z, (D) = —a(O, D) —(D/D*) (14)

with b, c,d of order unity. For all but a very small re-
gion near k~ =0, which does not affect the calculations
below, we may (for D finite and r~ 0) represent g(k) in

the approximate form

g(k) '=r+ (k —ko)'+const&& (Dk„k~/pa' ')' '. (l l)

Crucially, the fiuctuation integral o is now finite as
r 0: We find the leading behavior (omitting coef-
ficients)

cr(r, D) =(D/D ) '
~
z,

~

—(D/D*) 'r[lnPr], (12)

where P=
~ z, ~

'(D/D*) . As shown below, the ex-
istence of a finite limit o(O, D) as r 0 means that un-
der shear a local (spinodal) instability of the isotropic
phase can occur, in contrast to the static case.

We now use the results (8)-(12) to study the effect of
flow on the I-L transition. To do this, we should in prin-
ciple solve self-consistently the Fokker-Planck equation
(Sa). However, since our estimates (8) and (11) involve
writing g(k) =pg(k), with g(k) a mode lifetime, their
use amounts to replacing the convective term in (Sa) by
a purely dissipative term. Subject to this, it may be
shown that for states with q„=o (those in which order
may develop) the stability of steady-state solutions is ex-
actly as given by minimizing the effective potential + ob-
tained by substituting our results (9) and (12) for
a(r, D) into Eq. (2) for h = —,

' 8@/Ba. Note that this
procedure would not be valid for describing the instabili-
ty of states with q eo. When q„=o (only), the direct
convective term in Eq. (5) vanishes, and the sole effect of
shear is to alter the fluctuation contribution to r. It is
this which enables us to find stable steady-state solutions
to Eq. (5) by ininimizing @. In addition, we have
checked that under shear, non-Hartree corrections to @
are negligible under the same conditions as in the static
case (z ~ zH ).

On substitution of Eq. (9), valid for D«D*, into Eq.
(2) we obtain perturbatively a shift in the transition tem-
perature

z, (D) z, =(D/D*)'~ z—, ~,

where z, =z, (0)= —(aA, ) t is Brazovskii's value. We
find a similar perturbative reduction in the amplitude a,
of the lamellar phase at onset. Thus, when shear is ap-
plied, the transition is raised to higher temperature and
becomes more weakly first order. The spinodal locus
z, (D), which identifies the onset of an absolute instabili-

ty of the isotropic state [r(0) =Ol, may be identified for
all D using Eq. (12) as
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0— isotropic

FIG. 1. Schematic plot of the dependence on shear rate D of
critical temperature (upper curve) and spinodal (lower curve).

Hence there is a regime of temperature (0 & z & z, ) in
which the isotropic state is stable in the absence of Aow
but becomes locally unstable to lamellar ordering at high
enough shear. Similarly at z~ z, the isotropic phase is
metastable in the static limit but becomes unstable when
sufhcient shear is applied.

From (12) we may also identify at D=D* a crossover
to a strong-shear regime. To study the transition for
D»D*, we substitute Eq. (12) in Eq. (2) with a small.
At the spinodal point [r(0) =0] we obtain

h(a) =Ra [1+D*[ln(Pka )] /Dj ' —ka /2. (15)

We see that the first nonvanishing derivative of h is neg-
ative for small a. Thus the isotropic state at its spinodal
point cannot be a global minimum of the free energy;
correspondingly the transition must remain first order
even at high shear rates. However, the amplitude of the
ordered state a, (D) becomes extremely small for D
))D*; from (15) we find

a, (D) =a, (0)(D/D*) 't exp[ —(D/D*) ' ] . (16)

this ratio is of order 2, so that k —a' . For g —1000 A
and g =1 cP, this gives D*—10 —', which is perhaps a
rather high value. ' Recall, however [from Eq. (13)],
that the shear-induced I-L transition can occur at shear
rates D«D* in systems already close to their static
transition temperature z, .

In summary, we have shown how steady shear can
raise the transition temperature for the I-L transition
and make it less strongly first order in character. This is
in qualitative agreement with preliminary experiments'
on bilayer-forming surfactant solutions. The eAect arises
because shear reduces the infiuence of nonlinear fluctua-
tions, which are the cause of a lowered transition tem-
perature and first-order behavior in the static case. We
may contrast these results with that of a mean-field ap-
proach in which Auctuations are ignored. In that case
the only efIect of shear is to restrict the possible direc-
tions of the lamellar ordering to those with k =0.
Crudely then, one might argue that when Auctuations
are included, the transition under strong flow should
resemble a static Brazovskii transition in two space di-
mensions. This is qualitatively correct in predicting a
raised z„but wrongly predicts that the isotropic state is
always locally stable. In contrast, our self-consistent
treatment shows that for all temperatures z & 0 a local
(spinodal-like) instability of the isotropic phase is
reached at high shear. This result stems from the in-
tegrability of g(k) [Eq. (11)] near k =0 and hence is
directly dependent on the nonanalytic Aow-rate depen-
dence of the typical decay time g(k) [Eq. (7)] near the
critical shell.
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Similarly, the transition temperature z, (D) becomes ex-
ponentially close to the spinodal [Eq. (14)].

The results (13)-(16)are shown schematically in Fig.
1. We note from Eq. (10) that the divergence in g(k)
for k 0 is strongest near k~ =0. Thus, the lamellar
fluctuations which appear as the transition is approached
have wave vectors concentrated in the (0,0, ko) direction,
transverse to both the Aow velocity and its gradient. We
therefore suggest that, when the I-L transition is induced
by shear, the lamellar phase should occur preferentially
with this orientation. We may also estimate the charac-
teristic shear rate D*, for example in the case of a lyo-
tropic surfactant solution. ' Here (from the usual hydro-
dynamic arguments) the Onsager coefficient p obeys
pa —ktt T/rig, with tl the viscosity of the isotropic Auid
and g=ko ' the interlamellar spacing. An estimate of X

is obtained from measurements of g(k) in the isotropic
phase: Near the transition point in the static system one
has g(ko)/g(0)=1+a/z, =(a/X )'t . Experimentally'
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