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Analytic Evaluation of the Multifractal Properties of a Newtonian Julia Set
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The Julia set associated with the Newtonian map for the solution of z —1 =0 in the complex plane is
investigated by purely analytic means. The hierarchical organization of this strange repeller is explained
from basic principles. The family of generalized fractal dimensions and the equivalent spectrum of scal-
ing indices is evaluated using an extension of the Hentschel-Procaccia renormalization scheme. Our
quantitative results are in excellent agreement with direct numerical computations.

PACS numbers: 05.45.+b, 02.30.+g, 47.20.Tg

During the past few years, a general formalism has
been developed to quantify the multifractal properties of
complex sets which occur in nonlinear physics. ' Famil-
iar examples are strange attractors associated with
chaotic dynamical systems, and Julia sets which are the
boundaries of basins of attractors of iterated maps in the
complex plane C. While considerable progress has been
made in calculating the generalized fractal dimensions of
1D strange attractors, very few analytic results exist for
Julia sets and numerical investigations tend to be ex-
tremely tedious for these intricate objects.

This is regretable because iterated complex maps and
the Julia sets organizing their dynamics are not only fas-
cinating mathematical systems, but relevant to physics in
various ways: Applying the powerful tools of analytic
calculus to nonlinear complex maps one can gain, for ex-
ample, a basic understanding of the notorious small-
denominator problem plaguing Hamiltonian mechanics,
or of the scaling behavior of circle maps modeling suc-
cessfully the onset of chaos in many real physical situa-
tions.

Julia sets, in particular, are employed by Ruelle as
paradigms for "mixing repellers" (see Ref. 4), while Ka-
danoff considers them as models for "strange repellers of
dynamical systems" arising, e.g. , in the context of elec-
tron motion in quasiperiodic potentials. Direct use of
Julia-set theory is made in the analysis of the spectral
and localization properties of quantum states in
hierarchical tight-binding models. ' Other applications,
for example, to the Yang-Lee theory of phase transitions,

to magnetic spin models, and to diffusion-limited aggre-
gation (see below) have also been discussed recently.

In this paper we evaluate analytically all the dimen-
sions of the famous Julia set which arises by iterating in

C Newton's map for the solution of the equation
z —1=0. The problem of determining this Julia set,
which constitutes the boundary of the basins of attrac-
tion of the cubic roots of unity, was first formulated by
Cayley in 1879." Remarkably, it remained unsolved un-

til 1977 with the application of computer graphics to this
problem first by Hubbard, ' and later on by many oth-

3, 13 —15

Nevertheless, we will show that it is possible to obtain
a graphical representation of this set by purely analytic
means. Furthermore, we can calculate "from first prin-
ciples" the infinite number of scales associated with this
approximately self-similar object, which enable us to ob-
tain the generalized fractal dimensions D(q), and the
spectrum of scaling indices f(a) by applying the formal-
ism presented in Refs. 1 and 2. Our approach is not re-
stricted to the special Julia set discussed in the following.

Let F(z) =z —1, z C C. The associated Newtonian
map is

N(z) =z —F(z)/F'(z) = —, z+1/3z (1)
Its attractive fixed points are the roots of F, namely,

12zk/3 k =0 1 2 (2)

The Julia set J of N is the simultaneous boundary of the
basins of attraction of the zk, and can be obtained also
as the closure of the inverse orbit I of the repelling fixed
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point ~ of N (Refs. 3 and 12): J=I, where

I=[z C C~N'(z) =0;&=0,1,2, . . .j.
Let us first show how the structure of I can be complete-
ly understood without computer assistance. %'e define
Io=[01, I„=[zC C ~N"(z) =0[, n E N, implying that I
= U„=OI„. One immediately finds

I) =[zo,z), z2[ =[2 ' 'e'""+" '~0 =0, 1,2].
Now Mo=( —~,zo] is mapped on R =—( —00, 0] by N.
Therefore each I„will have precisely one element on

x„+1 =g(x„)=g'"'(x 1), n c N, (Sa)

where

g(x) =x j —,
' +cosh[ —,

' cosh '(1 —2x )ll . (Sb)

Two additional infinite subsets of I are readily found by
determining the other preimages M+ of the manifold
R . We obtain

R —.Let us call these ponts x„.
Solving the cubic equations involved we can generate

the x„by forward iteration,

M+=I(=(+ig6C~il=+('~i2 —
g ) i 0(((2 i}.

(7a)
where

Ii(x) =( —x)sinh'[ —,
' sinh '[( —x)

Altogether we have

gi =z2,

j„+,=hog " ' (x, )+i [[hog " ' (x~)]

(7b)

+[ho '" "( )]'j'" (&)

Now N(z) is not only invariant under complex conju-
gation, which is interchanging M~, but also under the
rotation D(z) =e' i z. Thus there are points of I
equivalent to x„, gl, and gi on the six manifolds D(MO),
D (Mo), D(M+- ), and D (M+. ), as shown in Fig. 1.

It is then clear how this scheme for generating the set
I has to be iterated: The nine manifolds in Fig. l repre-
sent the first member E] of a sequence of smooth partial

For n C N we denote by g„=(„+i@„the unique point of
I„on the arc M+. Solving again cubic equations one
easily gets

q„+, =I (x.) =h.g'-"(x, ),

t
embeddings. Each of the 27 manifold preimages of E[
will support an additional infinite subset of I, and so on.
Note that the end points of the arcs forming E„+[

=N ' (E„) are already determined by well-defined

points on the manifolds collected in E„. In the limit
n ~, U I", =

~ E„provides us with a complete embedding
of I, whose elements emerge as vertices: At the points
constituting I„, n ~ 2, precisely ten manifolds touch,
namely, one from E„—], three from E„, and six from
En+1 ~

As an example, the result of four steps of manifold
preimaging is presented in Fig. 2.

Our construction is very efticient: Each single opera-
tion contributes a whole class of points to I, including
especially preimages of 0 of arbitrary high order, which
are not accessible to ordinary inverse iteration. In addi-
tion, the embeddings E„rapidly trace out the detailed
skeleton of J and completely reveal the organizational
principle of this infinitely nested object (compare, e.g. ,

our Fig. 2 with the computer-generated pictures of J in

Refs. 3, 13, 15, and 16).
The resulting structure is evidently self-similar, at
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FIG. 2. Union of El, E2, E3, and E4.
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least in an approximate fashion. This is an almost trivial
consequence of the properties of the generating map N,
which is conformal and locally contracting. There are,
however, various diff'erent ways of resolving the whole
object into nearly congruent parts. The best one regard-
ing quantitative analysis is suggested by the alternative
skeleton construction sketched in Fig. 3, an obvious ex-
tension of the principles already employed. Because of
symmetry and self-similarity we may focus on the left
leaf A of the central Aower of J, whose points satisfy
—2 '~ ~ Re(z) ~0.

The structure emerging from this scheme may be
called a "fractal rosary": The original leaf A consists of
an infinite number of reduced copies, which come in

pairs and form two strings along D (M-)- and D(M+)-
like beads on a rosary. Therefore, an infinity of diA'erent

and independent scales are involved and, in a first ap-
proximation, these scales are specified analytically by the
points g„.

Based on these observations, a quantitative description
of the Julia set in terms of multifractal calculus' is
readily achieved. We keep on restricting attention to the
compact set A, as the central blossom contains 3 of all
the points in I and the weight of the infinite object would
scale with the "radial dimension" zero for any reason-
able mass distribution. The key to our analysis is the
Hentschel-Procaccia scheme for renormalizable mul-
tifractals; it is built on the assumption that the strange
set considered may be resolved into a collection of dis-

joint down-scaled copies of the original, which in turn

can be resolved in precisely the same way, etc. ' A gen-
eralization of this scheme operating with an infinity of
distinct scales is applicable to our problem and is imple-
mented by determining the renormalization parameters
s = l ', M, and p, m E N. These parameters have a
simple meaning: I denumerates the diAerent classes of
copies consisting of M identical members, which are re-
duced in size by the factor s as compared to the origi-
nal. p is the probability or weight of one element in the
mth class with respect to a properly defined measure.

As the reduced copies A of A come in pairs we have
M =2. Within our first approximation we define the
scaling parameters l as the normalized arc lengths on
M+ between g and g +~, i.e.,

—, ('~ +1/16(
l =2'~' dg

+1 p 1/2 p2 (9)

Using (7) we find that

l ~ c 3, c =0.1986.. . . (10)
m

Another obvious choice for the I is to take the normal-
ized Euclidean distances

~ g —
pm+~ ~. This probably

results in a small underestimation of the scales.
A subtle point when dealing with Julia sets is the

definition of a reasonable probability measure on J in or-
der to specify the p . This measure is dependent on the
way in which points of the Julia set are ordered. The
"natural measure" p is the one obtained by distributing
a unit mass equally over the points of I, AA and per-
forming the limit s ~. p is the unique measure with
the maximal entropy. '

A crucial advantage of our resolution of A into pairs of
subleaves A is that we immediately obtain the exact re-
sult

p =p(A )=3, mCN,
by inspecting the construction process for the E„.

Now within the Hentschel-Procaccia approach all the
generalized fractal dimensions D(q) are determined im-
plicitly or explicitly by very simple formulas'.

gM p l' ~=1, qual; (12)

FIG. 3. Schematic representation of the first three steps of a
skeleton construction involving an infinity of manifolds preim-
ages at each step.

and

D(l) =+M p„lnp /gM p lnl
m m

Equation (12) may be even further simplified by calcu-
lating only the first ten or twenty scales I via (9) and
summing up the geometric tail using the result (10).
Thus all D(q) are found by elementary calculus. For the
most interesting entity, the similarity dimension, we ob-
tain D (0) = 1.429. . . using (9). This is in excellent
agreement with a brute-force numerical test on the basis
of a million points of I, which yields D(0) =1.42. From
D(q) the complete spectrum f(a) of scaling indices is
derived by Legendre transformation in the usual way;
the results will be detailed in a forthcoming paper. '
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The boundary values a;„and a,„of the support of f
are directly calculable:

a;„=D(ee) =inf(lnp /lnl ) =1npl/lnlt =1.146. . . ,

a,. „=D(—~) =sup(lnp /lnl ) = lim lnp /lnl

=21n3/ln —' =5.419. . . .

A rather diferent measure p on J is suggested by the al-
ternative construction shown in Fig. 3, which drastically
rearranges the "time order" for the generation of the
points in I. The same weight may be assigned to each
A, as there is a one-to-one correspondence between
those points of I they accommodate. Taking some care
of the limit processes involved the production of a well-

defined f(a), whose support is [0,~). ' Other mul-

tifractals, whose Holder exponent e ranges all the way
from 0 to ~ have been discussed recently by Gutzwiller
and Mandelbrot' (see also Ref. 20).

In conclusion we have demonstrated that a "paper and
pencil construction" of a complicated Julia set represent-
ing the simultaneous boundary of three distinct basins of
attraction is indeed possible. Based on this construction,
already the simplest analytic approximation gives excel-
lent quantitative results for the complete family of gen-
eralized fractal dimensions. In fact, our scheme could be
made as precise as desired if the I are determined from
higher-order manifold preimages and if the scales con-
verge uniformly within A under backward iteration.
This question will be discussed elsewhere. ' Working
out for the first time analytically the structure of a self-
similar Julia set also clarifies the applicability in this
case of the recently proposed theory of generalized frac-
tal dimensions. '

Quite contrary to the usual situation faced in non-

linear science, the difhculty for the problem considered
here lies in the numerical verification of the analytical
assertions. Note that our methods work best for

q
—~ where computer tests are unfeasible, because

the calculator would have to run virtually forever to ex-
plore the sparsest regions of I.

After completion of this work we learned about a pa-
per by Procaccia and Zeitak, ' where an analytic ap-
proach to invariant measures associated with connected
Julia sets emerging from polynomial mappings is dis-
cussed. The authors make use of exact encodings and
the transfer-matrix formalism developed in Ref. 22.
Their beautiful idea (independently advanced also by
Bohr, Cvitanovic, and Jensen ) of representing fractal
diff'usion-limited aggregates by special Julia sets suggests

that the investigation of strange repellers becomes in-

creasingly relevant to nonlinear physics.
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