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Quantum Monte Carlo Simulation of the Davydov Model

Xidi Wang, @ David W. Brown,(b)

and Katja Lindenberg ®"()

University of California, San Diego, La Jolla, California 92093
(Received 21 November 1988)

Through an application of the quantum Monte Carlo technique, we investigate the thermal equilibri-
um properties of the one-dimensional model proposed by Davydov for the description of energy transport
processes in the a helix. The deformation of the lattice about a single (moving) excitation is computed
over a wide range of temperatures. We find that the model does admit a coherent structure at low tem-
peratures, but that this structure is substantially destroyed above 7 K.

PACS numbers: 87.22.—q, 71.38.+i, 71.50.+t, 72.15.Rn

Extensive effort in recent years has been brought to
bear on examining the possibility of energy transport in
1D molecular systems by a soliton mechanism as pro-
posed by Davydov."? Exact solutions for the model
Hamiltonian [cf. (1)] are unavailable except in a few
limiting cases, and the accuracy of numerical simulations
has been limited by their basis in equations of motion de-
rived from the Davydov Ansatz wave functions (“D;”
and “D,” as distinguished in Ref. 3). Though progress
has been made in understanding the approximate nature
of these Ansatz, no quantitative characterization of the
error involved in their use is known. Using D, Ansatz
machinery, Refs. 4 and 5 find stable solitons at zero tem-
perature in the standard 1D a-helix model, while Refs. 5
and 6 find that the soliton appears to be unstable at room
temperature. Using D; Ansatz machinery, Cruzeiro et
al.” claim solitons can still survive at room temperature.

In interpreting finite-temperature dynamical simulations N
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where a;',a; are boson creation and annihilation opera-
tors of C=0 bond excitation on the ith site of the a
helix and P,,Q, are the momentum and position opera-
tors of the center of mass of the ith peptide group in the
polypeptide chain. E is the site energy, J is the transfer
matrix element, M is the mass of each polypeptide
group, w is the longitudinal stiffness coefficient, and y is
the force exerted by an excitation on nearest-neighbor
molecules. We focus on the one-excitation Davydov
model although the calculation for the many-excitation
case can be carried out in essentially the same way.
In the canonical ensemble, the thermal eqpilibrium
expectation value of any physical observable O is given
by

(0) =Tr(Oe ~PH)/Tr(e ~PH) | )

Following Ref. 8, (2) is formulated in terms of Feyn-
man’s path integral for the quantum propagator with
imaginary time B, and the canonical weights are generat-
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one must resolve any solitons which may be present
against a noisy background consisting of thermal fluctua-
tions and radiation emitted during the relaxation of ini-
tial states. Characterization of solitons in such an envi-
ronment is difficult. In practice, qualitative characteri-
zations are made on the basis of a relatively small num-
ber of runs perceived as being representative of an en-
semble.

We present results of numerical simulations based on
the quantum monte carlo (QMC) technique first pro-
posed by Suzuki, Miyashita, and Kuroda.® The QMC
technique is not limited by formal approximations; the
accuracy of the equilibrium expectation values computed
is limited only by grid-size effects and statistical errors
due to limited run times. Subject only to these limita-
tions, the results we report are definitive.

The Hamiltonian proposed by Davydov and Kisluka'-?
as a model for vibrational excitations of the a helix is a
Frohlich-type Hamiltonian:
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ed by importance sampling of the possible quantum
paths. We compute the partition function Z =Tr(e ~#H)
by first dividing the imaginary time B into L intervals
At=pB/L. Between each pair of intervals we then insert
a complete set of basis states, thereby representing all
L-polygonal arcs through the Hilbert space connecting
the initial and final imaginary times. Our basis states
are products of exciton number states and the position
eigenstates of the lattice Using the checkerboard
decomposition tcchmque we separate the Hamiltonian
(1) into two parts, H =H,{P}+H {0}, such that H,{P}
contains all lattice momentum operators P and all exci-
ton hopping terms from even-numbered sites, and H 1{Q}
contains all lattice position operators together with all
exciton hopping terms from odd-numbered sites. The
Trotter formula

e _A’ﬁ=e '—ArHZ{P}e —ArH,{Q}[l +0{Aa73]
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allows Z to be approximated by
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wherein Q; ; is the position of the ith lattice mass at the
jth cut. For sufficiently small Az, higher-order terms in
the Trotter formula can be neglected.'® In order to com-
pute the trace in (3) we need only diagonalize the dimer
problem appearing inside the trace operator. The dimers
are decoupled (thanks to the checkerboard decomposi-
tion), allowing the needed matrix elements to be calcu-
lated analytically prior to simulation.

Equation (3) is the basis of our QMC simulation. The
summation in (3) is over all possible world line config-
urations® determined by the intermediate states inserted
in the partition function. The product of all terms of Z
along a particular world line gives the weight with which
that path occurs in the canonical ensemble. In principle
this weight could be calculated in its entirety. In fact,
however, we calculate this weight in a much simpler
way: Following the initialization of the first accepted
world line configuration, we generate new world lines by
making tentative Jocal changes of an existing world line
in a random fashion (as in Ref. 9). We use the heat-
bath algorithm!! for sampling the exciton part of the
world line, and the Metropolis algorithm '? for sampling
the lattice part of the world line. The only quantities ac-
tually calculated are ratios of /ocal quantities where a
tentative change has been made; thus, the global calcula-
tion that (3) appears to require for each world line
configuration is reduced to a local calculation, and the
amount of computation is dramatically reduced.

There are a number of situations where the accuracy
of the program can be tested. The simplest test cases are
the decoupled exciton and lattice systems. Our lattice
dynamics has been tested by computing probability dis-
tributions for individual oscillators,'? and comparing the
results with exact ground states. Our free-exciton calcu-
lation has been tested by computing the imaginary-time
density correlation function (n(i,0)n(i+1/,7)), deriving
from this free-exciton effective mass® and comparing the
result with the theoretical effective mass A 2/2J/% The
coupled system has been tested in the limit /J— 0. The
lattice deformation was measured (cf. below), and com-
pared with the exact analytical result.!> In all testing
procedures simulation results were found to agree with
theoretical values to within a few percent. (A typical
series of runs averaged over 20000 measurements after
2000 warmup sweeps, with A7=0.2. Smaller values of
At showed no significant improvement in accuracy.)

There are no exact solutions available against which to
check our simulation of the fully interacting system,

however, there is one quantity whose equilibrium expec-
tation value is independent of J, T, and N.'* That quan-
tity is the net contraction of the lattice, defined for free
boundary conditions (fbc) as

<AQ>E<QN)_<Q|)=_ZX/W, 4)

or eguivalently as the sum of all local contractions (AQ,,)
=(Qn+1)—{Q,-1). We used periodic boundary condi-
tions (pbc), which cause each local contraction to be
modified such that

(A pbe ={A0 e — N ~HAD) e .

The value of the free boundary lattice contraction can be
derived from the dependence of {AQ,)p,. Oon n and used
to monitor the accuracy of the simulation. In every
QMC run, the net lattice contraction was verified to
agree with the theoretical value (4) to within a few per-
cent.

Because of the translational invariance of the Hamil-
tonian, the thermal-equilibrium probability of an excita-
tion appearing on any given lattice site is independent of
the choice of site, and thus the average lattice deforma-
tion at any particular lattice site is zero (apart from the
net lattice contraction noted above). To measure the de-
formation around the excitation, we must construct a
correlation function using a moving coordinate as in Ref.
9. A measurement is made by detecting the excitation
on, say, the mth site. Having determined the location of
the excitation, we then measure the configuration of the
lattice relative to this site, and ensemble average this lat-
tice configuration. Thus

Ci=<an,j(Qm+i+],j_Qm+i—l,j)>, (5)
J

where n,, ; is zero or one, depending on the location of
the excitation at the jth cut, and (- --) indicates the
average over all runs. Simulation results for C; using the
a-helix parameters of Table I are shown in Fig. 1 for a
number of temperatures. We terminated our survey at
T =0.27 K, a temperature well below the 13.6 K which
corresponds to the soliton binding energy predicted by
Davydov.2 Lower-accuracy runs at lower temperatures
showed little deviation from the 7" =0.27-K results.
Figure 1 offers clear evidence that at low temperatures
the excitation and the lattice participate cooperatively in
a coherent structure, the basic unit of which extends over
2-3 sites. This bell-shaped structure is not consistent
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TABLE I. Model parameters for the a helix as given in Ref.
15. The site energy E plays no roie in our calculation and so
has been neglected.

Parameter Value Unit
J 7.8 cm !
/ 5.4 A
M 114 mp
w 13 Nm™!
x 6.2x10~ 1 N

with the common picture of the sech soliton of the (con-
tinuum) nonlinear Schrédinger equation, but it is rough-
ly consistent with the results of the modified nonlinear
Schrédinger equation which contains corrections due to
the discreteness of the lattice .!® With increasing tem-
perature, thermal fluctuations compete with increasing
effectiveness against the forces maintaining the coherent
structure, such that at high temperatures coherence can-
not be maintained even between nearest-neighbor sites.
The result is the erosion of the basic unit of the coherent
structure toward a localized state, and the disintegration
of the whole coherent structure into a superposition of
localized states. The nearness of our 11.2-K results to
the infinite-temperature result suggests that the destruc-
tion of the coherent structure is essentially complete at
11.2 K. The center of the transition appears to fall at 7
K, corresponding to an energy approximately half of the
soliton binding energy predicted by Davydov.

Fixed-temperature surveys were also carried out by
varying the coupling constant y. Unlike temperature
surveys, which show the width of the lattice deformation
to decrease monotonically with increasing temperature,
the fixed-temperature lattice deformation was found to
have a maximum width at intermediate coupling
strengths. Below the transition into the weak-coupling
regime, thermal fluctuations are sufficiently strong to be
effective in degrading the coherent structure, and de-
creases in coupling strength result in progressive locali-
zation due to loss of coherence, as discussed above. In
the strong-coupling regime, the binding energy is too
large for thermal fluctuations to have any serious effect,
and the narrowing of the deformation with increasing
coupling strength is due to increasing coherence.

A typical (0.27 K) world line configuration for a-helix
parameters is shown in Fig. 2. Fluctuations in the lattice
configurations are primarily due to the zero-point motion
of the masses, thermal fluctuations are very small, and
the amplitude of the lattice deformation is only a frac-
tion of the amplitude of the quantum fluctuations. The
strong quantum fluctuations in the lattice are due to the
acoustic nature of the phonons. Each normal mode of
frequency w, contributes O{h/2NMw,} to the mean-
square amplitude <0|Q3|0>; consequently, long-wave-
length acoustic modes contribute strongly to zero-point
motion. Though the importance of zero-point motion de-
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FIG. 1. Simulation results for the deformation function C;
[cf. (5)] using the a-helix parameters of Table I. %, T'=0.27
K;O T=28K; +, T=7.0K; ¢, T=11.2 K; and O, T =-co,
The latter data are obtained by examining the QMC algorithm
and observing that the only possible result of a QMC survey at
infinite temperature is that displayed. The vertical axis is in
simulation units. The arrow indicates the value of Co at
infinite temperature, 9.5% 1072 A, or 1.76% of the lattice con-
stant. Only eleven lattice sites are shown; however, every
QMC run was made on a lattice of at least 24 sites. Solid lines
through the data are provided to aid the eye only; no theoreti-
cal fit has been performed to obtain these curves.

pends on a number of factors including system size and
dimension, this Goldstone-mode nature of acoustic pho-
nons is expected to be present.!” A limited test of the
role of quantum fluctuations in the lattice can be made
by varying the lattice mass M. We increased M by a
factor of 100 at 7=0.35 K and observed the deforma-
tion to be essentially unchanged apart from a small (few
percent) increase in width, suggesting that despite their
large amplitude, quantum fluctuations have only a small
effect on the equilibrium deformation.

Our quantum Monte Carlo simulation of the Davydov
model of energy transport in the a helix has yielded
several conclusions: (1) A coherent structure exists for
temperatures below 7 K; (2) the basic unit of this
coherent structure is highly localized and bears a close
resemblance to the Davydov soliton if discreteness
corrections to the latter are taken into account; and (3)
above 7 K thermal fluctuations are effective in destroying
the internal coherence of this basic unit, its destruction
being essentially complete above 11.2 K. These results
are largely consistent with the dynamical simulations of
Lomdahl and Kerr® based on D> Ansatz states. A major
difference is that we find quantum fluctuations, absent
from Ref. 5, to be quite strong (cf. Fig. 2). The equilib-
rium quantity we have presented is not seriously affected
by quantum fluctuations, but it is likely that dynamical
properties would be affected by the presence of intrinsic
quantum noise.
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F1G. 2. A typical world line configuration for a-helix pa-
rameters at 0.27 K. In this simulation, 8 has been subdivided
into 400 cuts. Vertices of the polygonal arcs represent the
value at each cut of the deviation Q, — R, from its free-lattice
equilibrium position position R,. (The size of these deviations
has been magnified by a factor of 30 for ease of viewing.)
Similarly, open circles represent the location of the excitation
at each cut. There may appear to be more than one excitation
present at a particular cut despite the fact that every cut con-
tains exactly one excitation. This illusion is due to occasional
rapid (in B) oscillations of the excitation between adjacent
sites, which are difficult for the eye to resolve due to the high
density of cuts. Careful comparison of an occupied and an
unoccupied region shows how the weak, average deformation of
Fig. 1 is realized amidst a sea of intrinsic quantum noise.

Our results characterize only the basic unit from
which the state of the system is built up by linear super-
position, and thus our characterization of the quantum
state of the system is necessarily incomplete. It is clear,
however, that the nonlinear coherence which distin-
guishes solitons from other quasiparticles is present in
this system at low temperature. Our low-temperature
results therefore appear to favor a soliton superposition
state such as that of Venzl and Fischer.'® Above 7-11 K
the apellation “soliton” appears to have little meaning,
and a description in terms of small-polaron states may be
quite adequate.
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