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Calculation of the Lifetime of a Davydov Soliton at Finite Temperature
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The standard Davydov Hamiltonian can be partially diagonalized using a method due to Eremko,
Gaididei, and Vakhnenko. The complete Hamiltonian in this partially diagonalized form, however, in-

cludes a term omitted by these authors. Using this term in a first-order perturbation-theory calculation
results in an estimate of the lifetime of a Davydov soliton at finite temperatures. The lifetime at 300 K
is on the order of 10 ' s for parameters appropriate for the e-helical protein molecule. This is too short
to be useful in biological processes.

PACS numbers: 87. 15.By, 03.65.—w

In the 1970s Davydov proposed a soliton model for en-

ergy transport in biological molecules. ' Following his
original suggestion, the concept of the "Davydov soliton"
has been utilized in many studies, including work by
Davydov and his colleagues as well as a number of other
investigators. In particular, the Davydov soliton has
been put forward as the solution to the "crisis in bioener-
getics" described by Green and as a mechanism useful
in the description of a variety of biological phenome-
na. ' Numerical studies by Scott and co-workers ' sup-
ported the appearance of Davydov solitons in e-helix
protein molecules.

Considerable controversy has arisen in recent years
over whether the lifetime of the Davydov soliton at
nonzero temperature is sufficiently long for it to be bio-
logically useful. This problem has been explored by a
number of researchers using numerical simulations.

Some have questioned the stability of Davydov solitons
at temperatures of biological interest, ' while others
maintain that the Davydov soliton is stable at 300 K. '"
However, these investigations were based on the semi-
classical Davydov treatment generalized for finite tem-
perature.

In the research reported in this Letter, we have taken
a diAerent approach, exploring a quantum mechanical
aspect of the Davydov model, namely, that an analytic
perturbation-theoretic calculation of the lifetime can be
made if the Hamiltonian is partially diagonalized using
the method of Eremko, Gaididei, and Vakhnenko. ' Our
result is that the standard Davydov soliton has too short
a lifetime at nonzero temperatures to be useful in biolog-
ical processes.

In the Davydov model, the system is a one-dimensional
chain of N identical sites described by the Hamiltonian

H=g[eoB„B„J(B„B„+~+8„—+~B„)]+—,
' g[p„/m+w(u„—u„-~) ]+gg(u„+~ —u„-~)B,B„,

where B„and 8, are the creation and annihilation operators of an intramolecular excitation energy Eo on the nth site,
and u„and p„are the displacement and momentum operators of the nth molecule.

By considering state vectors which are the product of a normalized one-exciton state and a coherent phonon state,
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Davydov obtained, using semiclassical approximations, nonlinear equations for the functions a(n, t) and fq(t) with soli-
ton solutions of the form
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n the continuum limit. Here aq and aq are the phonon creation and annihilation operators, v =v& is the soliton veloci-
ty, s =v/v, is the ratio of the soliton speed to the speed of sound in the chain,
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In order to carry out the partial diagonalization, the Hamiltonian is first replaced by

H =H —g h kv (ak at, —Bt, —Bk ),
k
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where

B0 geiknRB T1

JN Ak =gak(n)B„, (s)

The partial diagonalization is achieved by the follow-

ing transformation:

Thus the analysis is made in the reference frame moving
with the soliton at velocity v. New phonons can be
defined by

1 1
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fq .
N N

with
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The coherent phonon state (lattice distortion) then be-
comes the vacuum state of the new phonons:

r i )/2
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I 0)ph =exp — g(fqaq+fq aq) I 0)ph,
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where bq I 0)i,h =0.

(7) Here A, an excitation which is localized at the lattice
distortion, while Ai, creates an unbound excitation with
wave vector k.

It is straightforward to calculate that

H =E,A, A, +QEkAkAk++6(toq —qv)bqbq+ —,
'

p J+ gh(tvq —qv)(1 —A, A, )(Bqfq+fq*bq)

where
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In the paper by Eremko, Gaididei, and Vekhnenko' the last term of H, containing (A, A —k+AktA, )(b —q+bq), is

omitted. If this term is omitted, the Davydov soliton state A, IO),„IO)„h is an exact eigenstate of H with energy
E, + 3 p J. It is this term, however, that yields a lifetime in first-order perturbation theory.

For the perturbation calculation, consider H =Hp+ V, where

g&(k, q)—(A, A k+AkA, )(b, +bq)+ g~(k, q)Ak ~qAk(b q+bq) . —
N q, k JN q, k

In the calculation, the initial states are of the form

n~

I &=II ' „,A,'I0&., I0&,
q (nq!)'t'

and the final states are of the form

(is)

nq

Ifk)=+ ' „,A,'Io),„I0&„., (n, ! '"
Note that the initial state is expressed in terms of the "new" phonons, while the final state is expressed in terms of the
ordinary phonons.

In the case of interest, the initial phonon distribution will be taken to be a thermal average, so that we consider the
transition probability for a transition from a state consisting of a single Davydov soliton together with a thermal distri-
bution of new phonons to a final state without the soliton:

t t
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Using the explicit form for V and the fact that the sum over states I
fk') contains a complete set of phonons for each
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value of k' one can rewrite 8'as
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is the thermal average.
To estimate a lifetime for the soliton, we are interested in the long-time behavior of dW/dt. By straightforward cal-

culation this is seen to be
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In order to evaluate this expression, it is necessary to calculate the thermal average,
tt

U(k, k ) (exp rX(kuk =qu)br bur (bk+b —k)exp lZ(alk qu)araki (b —k +br ))) . -
q

Since the energy of the soliton state is less than that of the localized exciton in the undeformed lattice, the part of
U(k, k") corresponding to the absorption of a phonon makes the major contribution to the sum in (20) at the tempera-
ture and parameter values of interest. Furthermore, the oA-diagonal terms of U(k, k") are negligible unless ! k! and

! k"! are of the order of 2p/trR or less. Since small wave vectors do not significantly contribute to the sum when
tr /2p»1, we may replace U(k, k") by I)(k,k")8„„ in (20), where
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For soliton velocity U =0,

g(t) = —g()„-, [[1—cos(o).ty)]y
s1nh
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For t & 0.002/t()„g(t) is well approximated by
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(, (t) can be easily evaluated for v=0 and temperature
T & Tp, where Tp = Iic(),/kti'.
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We note that lim, g(t) = —yt, where y=xgo/PA =rrgokttT/A. If we write A(k, k') =
3 Jp +(k'R) J —ittcok,
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Using g(t) = —yt and g(t) = —go[in( 2 co,t) +1.577+ —,
' irr] the integral can be evaluated':

Re„dt exp exp [g (t) + g(t ) ]
ih, t

Jp

=(242co ) 'F(1 go) y +
' 2 -(] -g0)/2

gpss'
cos cos (1 —go) tan

yh

Ro

for go«1.y'+ a/it

r

g pZ'—sin sin (1 —go)tan
yh

(30)

The small-go approximation is appropriate, since go=0.06 for typical values of the physical constants used to describe
the a-helical protein molecule.

Hence, for gp«1, T» Tp, and v =0, we find
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This expression can be calculated numerically using generally accepted values for the physical constants. In the litera-
ture there is wide agreement on the following values

J=1.55x10 J, m =(1.17-1.91)x10 kg, w =13-195 N/m, g=(20-6 2) x10 "N.
Using values in these ranges yields values for lim, dW/dt between 5.3x[0'' s ' and 2.9x10' s ' with correspond-
ing lifetimes between 3.4&10 ' s and 1.9x10 ' s. In this amount of time a Davydov soliton, traveling at half the
speed of sound in the chain, would travel fewer than ten lattice spacings. Thus the lifetime of the Davydov soliton at
300 K appears to be at least 2 orders of magnitude too small to allow this soliton to be biologically useful.
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