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Quantum Hall Effect at a Four-Terminal Junction
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A quantum-mechanical calculation is made of charged-particle motion at a four-terminal junction of
narrow wires in the presence of a magnetic field of arbitrary strength. The scattering probabilities
strongly reflect the influence of quantum effects of the junction, including subband thresholds and virtual
resonant states. The Hall resistance calculated from them may depart considerably from the classic
wide-wire result. Physical features are related to the emergence of pinned Landau levels as the field

strength increases.

PACS numbers: 72.15.Gd, 73.20.Dx, 73.50.Jt

The physics of quantum wires, devices made to con-
duct along two-dimensional surfaces shaped into very
narrow channels, is a topic of considerable current exper-
imental'™ and theoretical®'® interest. The quantum
Hall effect, observed when such devices are placed in a
magnetic field perpendicular to the plane, is modified
(compared with the classic wide-sample case)'' by the
quantum interference effects that such narrow channels
can exhibit. The simplest such device is the four-
terminal junction (Fig. 1). Measurement of the voltage
across arms III and IV when a current flows from arm I
to arm II yields the Hall resistance Ry of the junction.®’
The finite width w of the wires results in a transverse
quantization, so that electrons populate subbands whose
threshold energies depend on w and on B, the strength of
the magnetic field. For large w, and a Fermi energy and
B such that ng subbands are open, one expects that
Ry =h/e*no."' For small w, however, the experimental
results deviate from this prediction.'™ Attempts to un-
derstand these deviations have been made by Peeters’
and by Biittiker.® An approximation integral to Peeters’
work” is the separation of the incident wire from the
cross wires by a fictitious potential, and the assumption
of barrier leakage to generate the wave functions in the
cross wires (weak coupling). As in the zero-B case,® the
two-dimensional nature of the junction introduces effects
which such a treatment can miss. Biittiker® employs an
R-matrix approach which postulates effects (reflection
and resonances) induced by the junction which the treat-
ment we now describe yields automatically.

We present an exact quantum-mechanical treatment
of the square-well four-terminal junction in the ballistic
approximation. (Discussion of the uncertainties intro-
duced by such a treatment has been given recently by
Biittiker.'®) With the results of such a treatment, depar-
tures from the expected Ry =h/e 2ny that arise experi-
mentally can be examined without unnecessary theoreti-
cal assumptions. Such a treatment predicts,® for zero B
field, bound states at the junction, and also rapid varia-
tions with energy of the scattering probabilities (the
quantities which in the ballistic approximation determine

Ry) at the thresholds for the opening of new channels
(subbands). This complexity is enhanced by the pres-
ence of a magnetic field. New structures are found at
certain energies, causing Ry to go through zero there.
These structures are associated with virtual or resonant
states, pinned to the junction, which will become two-
dimensional Landau levels in the limit of large B.

As with earlier discussions,”® we neglect electron-
electron and electron-impurity interactions (the ballistic
approximation), and we assume for simplicity that the
wires are defined transversely by an infinite square well.
(For nonzero B the latter assumption does not present a
big computational advantage and it can be dispensed
with fairly easily.) The method we used earlier for the
zero-B case® is extended here to the case of a magnetic
field of arbitrary strength. It consists of matching, on
the periphery of the square defining the intersection (the
dashed lines in Fig. 1), functions which solve the single-
wire problem. In the symmetric gauge A=(—By/2,
Bx/2, 0), the analysis outlined in Ref. 8 for the scatter-
ing case can be taken over directly, with the replacement
of the B=0 transverse functions sin(nzx/w) with the
appropriate transverse functions f,(x/w)exp(ixy/2(?),
where 1//2=gB/ hc (assumed > 0) defines the magnetic
length /. The functions f,(x/w) are real for waves
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FIG. 1. The four-point junction and the regions I-V re-
ferred to in the text.
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which propagate along the wire, and were used by
Peeters’ in his study of the weakly coupled cross wire.
They are complex for those waves which decay along the
wire. Both types are needed to represent the exact wave
function in the arms near the junction. The wave func-
tion in the junction (region V, inside the square in Fig.
1) can be thought of as the superposition of a function
Wyery Which vanishes on the boundaries between regions
V and I and regions V and II, and ¥}, which vanishes
on the boundaries between regions V and III and regions
V and IV. ¥, is then expanded in the same set of wave
functions used in regions III and IV, while ¥y, is ex-
panded in the set used in regions I and II. The full wave
function in region V is then a superposition of all such
types of wave functions, both propagating and evanes-
cent, from both horizontal and vertical arms. We com-
pute them by using a numerical solution of the
Schrédinger equation. A full description will be given
elsewhere. 2

As in the zero-B case, matching the wave functions
and their normal derivatives at the edges of the square
produces eight equations (two for each edge). Approxi-
mating the various wave functions by expansions with M
transverse functions (no open or propagating modes and
M — n closed or evanescent modes) leads to an 8M X8M
matrix whose inverse yields the scattering or S matrix.
This scattering matrix expresses the outgoing waves in
terms of the incoming waves, and one immediately ob-
tains the probabilities for scattering from incident open
channel n to final open channel n' forwards (f,,), side-
ways to the right (sg,,'), sideways to the left (sz,.), and
backwards by reflection (r,,/). The general analysis of
Biittiker® then gives the Hall resistance Ry as a function
of the total probabilities F=X,,f i, Sk =2mm'SRnn's
St =2un'Sians and R =2, 7., summed over all open
channels,

7f=e—2RH= 2(Sr—S;1) '
h QF+Sg+S.)2+(Sg—51)?

It is noteworthy that the unitarity property, which limits
the original probabilities by the relationship

Z(rnn'+fnn’+sRnn'+sLnn') =1,
n

and which therefore limits the total quantities by R+ F
+Sgr+S;. =no, the number of open channels, does not
restrict R to be 1/no, the expected large-w result. The
plateau with this value of 7 corresponds to Sg =n¢ and
all the other probabilities being zero, but unitarity cer-
tainly does not require those values. For physically ac-
cessible values of the scattering probabilities, # may be
larger or smaller than 1/no, and it may even be negative
(see also Ref. 9). These departures are the consequence
of quantum effects associated with the junction, and they
constitute the new results that we present.

Figure 2 shows the surface & as a function of kw and
B=w?/1>=(w2q/hc)B. The expected plateaus, of

heights 1/ng, are clearly seen at larger B. They arise in
a well-understood way!! as a consequence of the number
no of filled bands and the one-dimensional density of
states at the Fermi surface. They are bounded by the
band edges, whose kw increases with B. There is also,
however, a rich structure of valleys and ridges in the
foothills of the plateaus. These are a consequence of the
quantum mechanics of the junction. To understand how
this comes about, we consider the simpler situation of
fixed B.

The behavior of R as a function of kw for B=6.0 is
shown in Fig. 3(a). Except at small kw, it bears only a
qualitative resemblance to the function 1/ng, which is
also shown. Figure 3(b) gives the scattering probabili-
ties F, Sg, and S; which produce it. The pronounced
structure of 7 is seen to be related in part to the opening
of new bands, at kw=6.48, 9.57, and 12.68, but there
are zeros of 7 that appear systematically some distance
below the first two of those thresholds, and a remnant of
structure below the third.

As with any such scattering problem, rapid variations
in the partial cross sections (probabilities F, Sg, and S.)
may be associated with virtual levels (resonant states) of
the system. To enumerate the possibilities, which de-
pend on the strength of the magnetic field, we recall®
that for B =0 there are two bound states at the junction,
trapped by having too low an energy to propagate out
through the arms. These are the ground state at
kw = 2.56, which has even parities in both the x and the
y directions, and the first excited state at kw = 6.06,
which has odd parities. Relevant to the high-3 limit are
the two-dimensional Landau orbits in which the electron
is bound by the magnetic field in localized states. They
have wave functions @,,, (r,0) =y, (r) exp(im@), where
the function y,,(r) has n—1 radial nodes, and energy
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FIG. 2. The dimensionless Hall resistance & =(e2/h)Ry as
a function of kw (Er =h2k?/2m) and the dimensionless mag-
netic field B=w?2/I2.
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FIG. 3. (a) The dimensionless Hall resistance & =/(e2/
h)Rpy as a function of kw (Er =#2k?/2m) for a dimensionless
magnetic field 8=6.0. (b) The scattering probabilities F (for-
ward), Sg (right), and S, (left) as functions of kw for B=6.0.

levels such that (kw)?>=0Qn—1+ |m | —m)B. The lev-
els possess discrete degeneracies, for example, that for all
m = 0. Our present interest is in the region of B lying
between these two limits.

For general values of B, the Hamiltonian is invariant
under rotation through n/2 in the x-y plane, R(x/2).
Since four such rotations in sequence produce the identi-
ty operation, states can be divided into four symmetry
classes such that R(x/2)¥(x,y) =¥(y,—x)=r¥(x,y)
with A*=1, ie, A=1, —1, i, or —i. The scattering
states described earlier can be decomposed into these
symmetry classes, each with a phase shift &, (or phase
shifts, for n9=2). Rapid variations with kw of the
probabilities can be associated with rapid changes in one
or the other of these phase shifts, and such behavior may
then indicate the presence of a virtual quasibound state
with that same symmetry, as a pole in the scattering ma-
trix at a nearby complex value of Aw. These poles are
searched for by repeating the whole calculation for com-
plex values of kw. The zero-B ground state possesses the
symmetry A=1. It remains a stable state below the
lowest band edge for all B, and for large B becomes the
nodeless Landau level n=1, m=0, as is verified by ex-
amining its spatial wave function ¥(x,y). In the present
non-interacting-electron phase of our calculation it has
no effect on . The zero-B first excited state, which be-
longs to A= —1, acquires a finite width when B is not
zero; i.e., at its pole, kw has a negative imaginary part.
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As B increases its width increases, and Re(kw) grows
faster than the kw of the second band edge, which it
crosses when B~6. The negative values of 7R at
kw==6.5 in Fig. 3(b) are produced by this virtual state,
which at this value of B occurs close to the second band
edge. After crossing the band edge, this state (pole)
moves onto an unphysical sheet of the scattering matrix
and no longer affects 7.

A finite value of 7 requires that left and right scatter-
ing have unequal probabilities, and thus must involve the
states of A =i/ and —i symmetry; a zero value of & then
requires that &, and §-; become equal (modulo ),
which happens when one of them changes rapidly by an
amount comparable to z. The rapid variation of & that
occurs at the values kw==5.6 and 9.2 in Fig. 3(a) is asso-
ciated with virtual states of these symmetries. These
states are found to have large widths as B— 0 (and thus
have little physical effect there) and as B increases they
become narrower. The state responsible for the kw =5.6
structure has A= —i, and for large B (=15) it stays
just below the second band edge to become the n=1,
m = —1 Landau level. The kw == 9.2 structure is due to
a A =i state which approaches the third band edge as B
increases, and crosses behind it (onto an unphysical sheet
of the scattering matrix) at 8~13. By then it is becom-
ing the n=1, m=1 Landau level. It should be possible
to locate and identify all of the relevant Landau levels at
large B. It is likely, however, that some of them will be
on unphysical sheets, and thus will have no practical
consequences. The systematics of this behavior has yet
to be clarified.

We can now return to Fig. 2 with an understanding of
the origins of some of the lowland structure. The ridge
which starts at kw~6.0, in the vicinity of the second
band edge, has on its low-kw side a flat ® =0 valley, the
n=1, m=—1 Landau virtual state. A deep, narrow
chasm, the result of the A= —1 excited state, causes
there to be a precipitous descent on the high-kw side of
the ridge. As B increases, these effects gradually
moderate, until at B~ 15 the ridge has merged into the
steady rise between the plateaus &= 4 and 1. There is
a similar valley just below the third band edge, at
kw~9.4, due to the n=1, m=1 Landau level, but only
gradual structure on its high-kw side, since there is no
level there corresponding to the A = — 1 excited state.

A feature of Fig. 2 which we remark on without a
complete understanding of it is that the plateaus &=+
and ¢, which have a simple explanation when they ap-
pear above the fifth and sixth band edges (kw==16 and
19, respectively), appear to extend to considerably below
those kw values for small B. There is even a trace of the
R=1+ plateau at kw~7.5. The system appears to
“know about” the higher bands before they are opened.
This is presumably a reflection of the fact that the wave
functions at the junction do involve all of the channels,
including the evanescent ones.

A comparison in detail with particular experiments is



VOLUME 62, NUMBER 15

PHYSICAL REVIEW LETTERS

10 APRIL 1989

not possible here because each individual device may
have rounded channel potentials, rounded corners at the
junctions, extra elbows in the arms, or even extra termi-
nals. (For example, six-terminal junctions do not have
the same 7R as the four-terminal junctions because of in-
terference effects.'?) We can, however, comment in a
general way on the relevance to experiments of certain
features of Fig. 2. It seems likely that the broad valley
where 7 goes to zero near kw =5 (or at kw =5.8 in Fig.
3), and less pronounced valleys elsewhere, have great
relevance to the experimentally observed ‘“quenching” of
the Hall effect.>!? The extra #=+ and %, etc., pla-
teaus may well be related to the “last plateau” recently
reported by Ford et al.'* We intend to address such
questions in a more complete discussion. '?

In summary, according to non-interacting-electron
theory there is a rich structure to the Hall resistance as
measured in narrow wires which is related to the quan-
tum mechanics of the four-point junction, and the pinned
Landau levels which occur there. Some of this structure
may be detectable experimentally. Finer details of the
structure will be spread out in energy somewhat by
finite-temperature effects, but presumably not the
broader features. It is also evident that a Hall-resistance
measurement emphasizes the effects of the A =i and —i
symmetries. Other measurements, with perhaps more
complex geometries, may be appropriate for exploring
the other symmetries and their states. There are, of
course, effects of a many-body nature, and also compli-
cations associated with the solid-state physics,'O which
our treatment has not included. It may be that, as with
other Hall-effect manifestations, the results are less sus-
ceptible to those complications than one would initially
expect. That requires, however, considerably more
study.
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