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Phase Transitions in a Driven Lattice Gas with Repulsive Interactions

K.-t. Leung, ' B. Schmittmann, and R. K. P. Zia '

Center for Transport Theory and Mathematical Physics, Physics Department,
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Institut fu'r Theoretische Physik, Universitat Dusseldorf, D 4000 D-usseldorf, West Germany
(Received 1 February 1989)

We study a lattice gas with repulsive nearest-neighbor interactions driven to steady state by an exter-
nal electric field E. Using Monte Carlo techniques on a two-dimensional system, we find, in the E-T
plane, a line of second-order transitions joining a line of first-order ones, at a point which is probably tri-
critical. From a field theoretic model, we show that the operator associated with E is naively irrelevant
for critical behavior. This expectation is borne out by the Monte Carlo result P = —, .
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Phase transitions far from thermal equilibrium occur
in a great variety of physical and biological systems. Be-
cause of the problems inherent in nonequilibrium statisti-
cal mechanics, it is of primary interest to formulate
clearly the microscopic mechanisms governing the transi-
tions. This is a prerequisite before more intricate analyt-
ic techniques (such as mean-field theories or renormali-
zation-group approaches) can be tailored to seek a
deeper understanding. Models adopted from equilibrium
statistical mechanics have the advantage that their be-
havior is well understood, in terms of both a discrete lat-
tice description and a coarse-grained continuum theory.
If such a system is driven out of thermal equilibrium in a
controlled way, its properties may be significantly
modified.

Recently, a prototype model was proposed for consid-
ering one specific type of nonequilibrium behavior, i.e., a
system in steady state. It is the lattice gas with particle-
conserving hopping dynamics under the influence of an
external field E. The eA'ect of E is analogous to that of
an electric field on charged particles: It causes a bias of
the hopping rates in a given direction i, induces a net
current, and drives the systems away from equilibrium.
One of the central issues is to determine if and how the
Ising-type equilibrium phase transition is aAected, when
cooperative.

The driven lattice gas has attracted considerable atten-
tion. ' ' With the focus almost entirely on models with
short-ranged attractive ["ferromagnetic" (FM)] interac-
tions, most results have been obtained following three
major lines of approach: (i) direct Monte Carlo simula-
tions in two' and three dimensions; (ii) mean-field
solutions, exact in the fast rate limit, and (iii) renor-
malized field theoretic calculations of critical behav-
101.

The essential observations from simulations are as fol-
lows: The phase-separation transition persists at all field
strengths, with T, (E) an increasing function of E. At
the critical density, it remains continuous, but the (mea-
sured) critical exponents are incompatible with their Is-

ing values. In the treatment by van Beijeren and Schul-
man, the hopping dynamics is simplified considerably,
by assuming that longitudinal jumps (parallel to the
field) occur much more frequently than transverse
jumps. This "fast rate" limit allows for a separation of
time scales in the master equation, electively reducing
the spatial dimension of the problem by one. Now the
steady-state probability distribution can be obtained
analytically, with mean-field exponents as one of the
main results. These predictions are in agreement with
field theoretic calculations, using renormalization group
in an expansion about the upper critical dimension d,
=5. Here, the main conclusions are the following: (a)
The dynamics of the system cannot be formulated in
terms of (the functional derivative of) a suitable Hamil-
tonian. (b) The jump rate at the fixed point is a fast rate
limit. (c) The order-parameter exponent P, governed by
a dangerous irrelevant operator, is —,', to all orders in
perturbation theory and for all d & 2.

In this Letter, we report Monte Carlo simulations,
supported by analytical arguments, of the driven lattice
gas with repulsive short-ranged ("antiferromagnetic")
interactions. So far, the only known' properties are that
E lowers the transition temperature so that the system is
always disordered when driven by suKciently strong
fields. We studied, in some detail, the phase diagram in
a corner of the (E,T) plane, where E and T are both of
the order of Ttv, the Neel temperature. (In our units,
both Boltzmann's constant and the lattice spacing are 1.)
We found a line of second-order transitions, starting at
(0, Ttv), and a line of first-order ones, emerging from the
T=0 axis. We believe that these lines join at a (none-
quihbrium) tricritical point. We propose a field theoretic
model, and have found that E is (naively) irrelevant for
both critical and tricritical properties, for all d & 2. Our
conjecture is that E remains so in d=2. Subsequent
simulations support this conjecture, in the sense that our
data are fitted by P = —,

' and v= 1 quite well. The rest of
this Letter is devoted to a brief description of our simula-
tion methods, data analysis, and the field theoretic mod-
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el.
In an Ising lattice gas, a site i of the (L XL square)

lattice may be occupied by a particle or empty. Using
the labels n; =1 and 0, respectively, the repulsive short-
ranged interactions are modeled by the Hamiltonian
Jgn;n/, with J & 0 and the sum over nearest-neighbor
pairs. Employing standard Monte Carlo methods, " we
simulate only p=g; n;/L = —, systems. Evolving sto-
chastically under Kawasaki ' dynamics, the particles
may only jump into a neighboring hole. The jump rates
used are the usual Metropolis'' ones, except when the
particle jumps along (against) E, in which case they are
enhanced (suppressed) by a factor e / (e / ). With
periodic boundary conditions imposed in both directions,
the system has translational invariance, settling into a
steady state eventually. In the absence of E, the system
orders spontaneously for T & T& =0.5673J. ' The par-
ticles preferentially occupy one of the two sublattices
(say, white squares on a checkerboard). We naturally
refer to this state as "antiferromagnetic" (AFM).

Our goal is to study the eA'ects of the driving field E
on this phase transition and to map out the phase dia-
gram in the E-T plane. We performed simulations for E
ranging from 0.5 to 2.5 (in units of J) and for T from
0.2 to 1.2 (in units of T~). Runs are as long as 0.2X 10
Monte Carlo steps per site (MCS).

The efrects of E are much more subtle than for the
FM case, since E is not directly coupled to the order pa-
rameter, the "staggered magnetization": p;:—( —1) '

&& (2n; —1). Instead, E drives only the conserved density
n; Using .P—:(1/L )(P;p;) to identify phase transitions,
we find that the critical temperature T, (E) decreases as
E increases. Simulations at small E (0.5 and 0.75) show

that the transition remains a second-order one. Contrary
to the FM model, where strong spatial anisotropy is ob-
served even far from criticality, we find that anisotro-

py is mostly negligible and small even in the critical re-
gion. Thus, we invoke isotronic finite-size scaling'" to
explore the critical behavior, using high-precision data in

systems with E=0.5 and L=12, 18, 24, 30, and 40. Fol-
lowing the suggestion by a field theoretic argument (see
below) that E is irrelevant for this transition, we attempt
to fit p with an equilibrium scaling form with Onsager
exponents: p(L, T) =Lp/'X+. (z), where z =—

~
1 —T/

T, (E)
~
L ' ". Using P = s, v = 1, and adjusting T, in a

plot of In(&L ~/') vs ln(z), all data points collapse onto
one curve, A+ (for T ) T,), or another, A' — (for T
& T,). Our result is T, =0.81~0.01 for E=0.5. For

both large and small r, X-+ has the well known' critical
behavior of the order parameter in a finite system. Thus,
we conclude that E is indeed irrelevant for critical prop-
erties of our system. This is believed to hold along the
entire line of second-order transitions.

The transition continues to be of second order until
E = 1, where hysteresis appears, becoming more pro-
nounced as E is increased. For the present length of

runs, hysteresis for E~ 1.5 is so strong that the low-

temperature branch is never reached by lowering T. On
the other hand, p decays rapidly from the low Tb-ranch
to the high-T one, when T is raised from T=O beyond a
certain temperature, which we denote by T„(E). Simi-
larly, when we fix T and scan along E, we observe jumps
between the two branches in both directions. This be-
havior, supported by studies of the distribution function
of p, signals a first order -transition. T„(E) represents
an upper bound of the transition temperature, decreasing
with larger E. We believe that this line of first-order
transitions joins the second-order line at a tricritical
point. Our data put it roughly at E=1 and T=0.5.
More simulations are necessary to check this conjecture,
determining more precisely the location and nature of
this dynamically generated multicritical point.

If the field is increased further than a critical E„then
AFM order is destroyed for any T, in contrast to the
driven attractive case. This occurs when E is strong
enough to overcome the repulsive force. Using a T=O
argument, one would naively expect E, to be 3, since a
particle will jump into a hole with three neighbors
present. Upon closer examination, however, E, =3 turns
out to hold only for a system at T—=0 and p= —,'. For
generic systems, E,. is just 2, since a local thermal excita-
tion or defect reduces the number of particles around a
hole to 2. For E~ 2, an avalanche follows any initial
jump, destroying AFM order. ' Confirmed by simula-
tions, this process takes only a short time (—400 MCS
for L =40). We emphasize that this will occur when the
system deviates from exactly half filled by a single parti-
cle, regardless of L. So, p —= 2 stands for more than just
p = —,

' (in the thermodynamic limit).
We summarize our findings in a phase diagram (Fig.

1). Note that the heavy line at T=O and 2 ~ E ( 3 rep-

O. S

FIG. 1. Phase diagram in E-T plane. The unit for E/T is
J/T~ The solid (dashed) li.ne represents second- (first-) order
phase transitions. See text for an explanation of the heavy
solid line.
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resents an ordered state only if a p= 2 system is initially
ordered. It is possible for a p—= 2 finite system to evolve

from disorder to compete order in a finite time. Whether
this is always possible or whether glasslike minima exist
is an intriguing, if merely theoretical, question. Finally,
we remark that a p& 2 system corresponds to an AFM
model under a uniform magnetic field. For E=O, the
Neel transition still exists, though at a difI'erent tempera-
ture. We believe that when such a system is driven, the
lines of phase transitions will extend into sheets in E-T-p
space.

Next we study the critical behavior by field theoretic
techniques. There are two main ingredients in a continu-
um model: The ordering field "staggered magnetiza-
tion, " p(x, t), and the "magnetization, "m(x, t), which is
the coarse-grained n; —

2 . Though nonordering and
zero on the average, the latter is essential since E has an
effect on the phase transition only via m. Taking into ac-
count the symmetries in tt and m, we first write a
Landau-Ginzburg-Wilson Hamiltonian suitable for the
critical dynamics' of an AFM with E=0:

H = ddx [-,' (Vy) '+ —,
'

zy '+ gy'/4!

+ —,
' m + —,

' um tt + ] .

Of all the parameters, only z depends on T essentially,
vanishing at T~ (after renormalization). The efl'ect of E
is introduced, in the same way as for the FM case, by
modifying the E =0 equation of motion for the particle
density (m, in our case). Thus, the Langevin equations
are

8& SH+
8r 8y

=AV —A(E V)m + g
r)t 8m

where I and A are Onsager coefficients, while g and g
are Gaussian correlated noise terms. Note that E here is
related to the E above by a complex but unessential way,
just as H may be traced to J+nn.

Following the standard renormalization-group ap-
proach, we would ask if E is relevant to the Wilson-
Fisher fixed point' g*, which controls nonclassical criti-
cal behavior of the E=O system. Before this question
can be fully answered, we must compute dE, the naive
dimension of E. Casting (I) in a dynamic functional for-
malism, ' we find d~ =(2 —d)/2, in contrast to (5 —d)/2
for the FM case. Thus, for d & 2, the Gaussian fixed
point is stable. We conjecture that g* is also stable
down to d=2. If the correction beyond d~ (in a 4 —d
expansion) is negative, then we can assert that Onsager
exponents should be observed in our simulations along
the entire line T, (E). Such a calculation is not entirely
trivial, since u, which mediates the eff'ects of g on E, is
also naively irrelevant for d & 2.

Apart from fixed-point analysis, we could also exam-

ine the Aow in J space under renormalization. Not
surprisingly, all (transport) coeflicients of gradient terms
become anisotropic. Unlike the FM case, m does not or-
der and p is not diffusive so that anisotropy is not a dom-
inant feature in criticality. To lowest order (E ), the
critical parameter i is modified by a positive term, indi-
cating a lowering of the transition temperature from T~.
On the other hand, g is shifted by a negative contribu-
tion, suggesting that g(E ) may vanish, as well as z for
a sufficiently large E. That would be the signal of a tri-
critical point, supporting our belief gleaned from simula-
tion data. Using naive dimensional arguments again,
one might predict that E is also irrelevant for tricritical
behavior in d ~ 2. Since there is no such point in a E =0
system, more careful analysis is necessary before a clear
picture of this dynamically gene'rated tricritical system
will emerge.

In conclusion, we studied a lattice gas with repulsive
nearest-neighbor interactions driven to steady state by an
external field E using two methods: Simulations on a
discrete d=2 system and field theoretic analysis of a
continuum model in any d. A phase diagram of the
former is found, showing a line of second-order transi-
tions joining a line of first-order ones, at a point which is

probably tricritical. A finite-size scaling plot of a certain
E&0 critical system favors Onsager exponents. From a
field theoretic analysis, we see more clearly the features
that distinguish this system from the FM one. In the
latter, the external field couples directly to the conserved
ordering density and is naively relevant for d & 5, gen-
erating anisotropic critical parameters and necessitating
an anisotropic dimensional analysis. In our case, E cou-
ples indirectly through an auxiliary, nonordering field.
Naively irrelevant (for d ) 2) and generating only trivial
anisotropies, small fields do not aA'ect critical behavior.
On the other hand, large fields do create a rich and
different system for interesting future investigations.
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