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Dynamical Test of Phase Transition Order
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The dynamics of the interface between an ordered phase, characterized by an order parameter y and
a disordered phase where @=0, provide a promising, powerful tool to distinguish between continuous or
second-order and weakly first-order phase transitions. %'e apply this idea to the nematic-smectic-2
transition and find that this transition is weakly first order even when the latent heat is too small to mea-
sure.

PACS numbers: 64.70.Md, 64.60.Cn, 68.35.Rh, 68.45.Kg

Distinguishing an order-disorder transition that is
weakly first order from one that is continuous can be
diIIIicult. The latent heat of the transition is small and
thus di%cult to measure. Also, the correlation length of
fIuctuations can grow to a very large, but finite, value as
the transition is approached, further obscuring the
diA'erence between weakly first- and second-order (con-
tinuous) transitions. In this paper, we describe a novel
method, especially useful for weakly first-order transi-
tions, to experimentally infer the phase transition order
from the existence and dynamical properties of an inter-
face, or front, between two phases. We apply it to the
smectic-2-nematic (A-N) transition whose nature has
been under discussion for over fifteen years. '

The order parameter y of the A phase is the amplitude
of a one-dimensional density wave with wave vector
parallel to the director n. The N phase is simply an an-
isotropic liquid with y=0 and the molecules on average
aligned with n. In 1974, Halperin, Lubensky, and Ma
(HLM) predicted that the coupling between the lluc-
tuations of y and n results in a cubic term in the
Landau-de Gennes free energy so that the N-A transi-
tion is always first order.

In spite of many sophisticated experiments, the nature
of this transition has never been completely settled. Re-
cently, Anisimov et al. showed that the scaling of in-
creasingly smaller latent heats agrees with the existence
of the HLM cubic term. However, some compounds
have immeasurably small latent heats and so appear
to be second order. By studying the dynamic behavior of
an interface at this transition, we find that five samples
in this latter class are actually first order. A longer pa-
per is required to show that our data are consistent with
a HLM cubic term in the free energy.

In a Ginzburg-Landau analysis, the phase transition
between the ordered (2) phase with yAO and the disor-
dered (N) phase with y=0 is described by a free energy
of the type'

F=J [f(y)+ gradient termsldV,

where f(y) is a polynomial in y. HLM show that the
coupling to director Auctuations results in a cubic term,—

~ y~, in f(y), inevitably making this transition first
order. Let us now summarize how interfacial properties
depend on phase transition order in a mean-field picture.

For a second order trans-ition, f(y) is such that above
the transition temperature, T„f has only one minimum
at y=O. Furthermore, when T & T„df/dy&0 for any
@&0 providing a finite driving force for relaxation to the
disordered state. This implies that if the system is
brought into a state @&0, e.g. , by rapid heating, the or-
der parameter relaxes homogeneously. Propagating in-
terfaces cannot exist for T & T, . Below T„f has mini-
ma at @&0 and a maximum at @=0. Although the
disordered state is unstable the driving force vanishes,
df/dy=O, at y=O. As a result, a propagating front or
interface can, in principle, be created for T & T, . As has
been shown and verified experimentally, the speed of
such fronts varies as

~ e~ ', not linearly, with e=(T
—T, )/T, .

Near a first-order phase transition, both the ordered
and disordered phases are local minima of f(y). Their
relative stability depends on T. For T) T„the one at
y=0 is stable while the one(s) at y&0 is (are) metasta-
ble. When T (T„their stabilities are exchanged. Since
both phases are locally stable at the transition, the free
energy of an interface between the two phases is positive.
There is a nucleation barrier near the transition so the
system can be undercooled or superheated. Thus, at
first-order transitions, interfaces occur and, depending
on temperature, they propagate into either phase.

If the transition is first order, one gets from the time-
dependent Ginzburg-Landau equation, ro ity/Bt = —6F/
By, for the speed v of a steadily moving front between
the disordered phase at x —~ and the ordered phase
atx +~,

2
dip ~ dy df

Uro il dx =
' dx — " =f~ f„=Ie, (2)—

dx ' & — dx dy

where L is the latent heat and ~0 is a microscopic relaxa-
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tion time. Equation (2) relates the front speed, the
front profile dy/dx, and the free-energy density
diA'erence between the two phases. It confirms that a
transition to a lower free-energy state can occur by front
propagation. Sufficiently near T„f, f„—is linear in e,
so from Eq. (2) U goes linearly through zero at T, . Of
course, when the transition is weakly first order, one ex-
pects the linear regime in U vs e to be small. Next, using
scaling arguments, we relate the front profile and latent
heat to the coherence length g, at T, to obtain the slope
of vvs |..

If the HLM cubic term is absent, f is of the form'
f=@ (y —yo) near a Landau tricritical point (LTP)
where the coe%cient of the y term is zero. The curva-
ture at the @=0minimum is given by d f//dy = go —1/
j, and the latent heat scales as L —yo —g, '. Substitu-
tion of these values into Eq. (2) gives vroyo/g, —e/g, or
U/e —g, /ro. Thus, near the LTP, a linear relation is ex-
pected between the slope of U (e) and „",. The more first
order the transition, the slower the front propagaies
With a HLM cubic term, the LTP is not a tricritical
point and the above linear scaling relation between v/e
and g, breaks down for small yo or L.

In summary, stable as well as moving interfaces occur
near first-order transitions. The velocity is linear in t. for

0. For second-order phase transitions, interfaces can
be created under carefully controlled experimental con-
ditions only on one side of the transition, and then they
propagate with a speed proportional to e'~ .

We now apply these ideas to fronts propagating under
isothermal conditions in the two-component systems
8CB-10CB and 9CB-10CB." These mixtures are of
particular interest because the greater the concentration
of 10CB the more first order the %-A transition. The
best available x-ray' measurements show this transition
to be second order in 8CB and find a tricritical point at
9.7% by weight 10CB in 9CB. On the other hand, the
best available calorimetry measurements find the 9CB-
10CB system to be always first order and a tricritical
point at 32% 10CB in 8CB in the 8CB-10CB system. In
our experiments on these two systems, however, we al-
ways observe interfaces (see inset of Fig. 1) whose prop-
erties are consistent with the W-A transition being weak-

ly first order. "
The experiment was to start from a uniform state

above (or below) but within 0.02'C of T„rapidly
change the temperature to T, just below (or above) T„
wait typically a few seconds for the front to appear, and
record the front passage with a video monitor. From a
frame-by-frame analysis, the speed U (e) is found, with a
resolution of 0.1 sec, from the time the interface takes to
travel about 1 mm. A plot of v as a function of tempera-
ture from the 8CB-10CB study is shown in Fig. 2. For
the 35 mol% mixture, the front velocity clearly goes
linearly through zero as expected for "weakly" first-
order transitions with just barely measurable latent
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heats. Although the uncertainty in temperature is the
same for 8CB as for the mixture, its steepness precludes
as precise a determination of the slope as for the mix-
ture. Nevertheless, these data are also consistent with a
linear dependence of U on e. Our data for the 9% and
17% mixtures, both with latent heats too small to mea-
sure, fall between these two extremes. These data are
shown as an inset to Fig. 2.

Temperature gradients, in principle, can create ap-
parent interfaces at second-order transitions. The fol-
lowing observations provide strong arguments against
this possibility in our experiments. (i) Small (2x2.5
x0.7 mm ) platinum resistance thermometers, thermally
sunk to the cells, measured the temperature accurately to
0.01 C. The data presented here were all taken at con-
stant temperature. (ii) Cells made of two glass plates 1

mm thick or two sapphire plates 0.5 mm thick with the
liquid crystal in the 13-pm gap between the plates were
used. Although the thermal diA'usivity of sapphire is 26
times larger than glass, within the experimental accuracy
of 20%, the measured velocities are the same in both
types of cells. Thus, the interface motion is not driven
by thermal relaxation of the cell and not governed by

FIG. 1. Inset: Photograph of video monitor screen showing
interface between the nematic phase (the darker region) and
the smectic-8 phase. The direction of orientational order is
parallel to the vertical axis. The sample is 9CB and the field of
view —1 mm . dv/de is plotted as a function of g, . From left
to right, the points represent the following concentrations: 28.2,
22.4, 15.6, 9.7, 5.8, and 0.0 weight% 10CB in 9CB and 8CB.
The lower limit in the uncertainty of g, is the last data point
measured by x rays (Ref. 12) and the upper limit is simply
chosen to be symmetric about g, estimated from latent heat
data (Ref. 5). The error in speed is shown as +'20% for the
9CB-10CB mixtures and ~ 50% in 8CB.
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FIG. 2. Speed as a function of temperature for SCB and 35
mol% 10CB in 8CB. Inset: Similar data for 9 and 17 mo1%
10CB in 8CB mixtures. Observing an interface propagate on
both heating and cooling is qualitatively the signature of a
first-order transition.

heat release in the interfacial region. ' (iii) Our data do
not show a detectable asymmetry for cooling and heat-
ing. ' A quantitative discussion of the expected asym-
metry of a gradient-induced interface at a second-order
transition will be given elsewhere. (iv) Our field of view
is always at a fixed position with respect to the heaters.
With a given part of the sample cell in the field of view,
the interface propagates in a fixed direction with respect
to the sample, presumably determined by a nucleation
site. When a different part of the cell is brought into the
field of view, the propagation direction is different with
respect to the heaters. It is, therefore, unlikely that sys-
tematic temperature gradients play a role. (v) In a nar-
row range around T„we observed static interfaces
pinned at certain spots, presumably imperfections, of the
cell. Pinning is associated with a surface tension be-
tween the two phases, a feature of first-order transitions.

It is known ' that bend or twist distortions can inhibit
the formation of the A phase and drive the transition
first order. Indeed, we found it important to have cells of
uniform thickness, 13+ 2 pm, ' with the director orient-
ed in the plane of the substrate' and the alignment on
both surfaces parallel to within 1'. The director was set
parallel to the polarizer and the analyzer slightly offset
from the crossed position. Apparently the observed con-
trast results from the strong decrease in Rayleigh
scattering in the A phase, although it is surprising how
strong the contrast is when the transition is very weakly

first order (e.g. , pure 8CB).
From data similar to those shown in Fig. 2, we deter-

mined the slope dv/dE with a linear least-squares fit.
The g, are not known for the 8CB-10CB mixtures, so we

only analyze the 9CB-10CB mixtures to check the scal-
ing relation U/e —g, . Although the coherence length
parallel (gi) to n is about 10 times larger than perpen-
dicular (g~) to n, we surprisingly did not detect a corre-
sponding systematic anisotropy in the propagating speed.
Since there was no direction dependence of U, we took g,
to be the average that enters in hyperscaling, '

(, =lgii(T, )g&(T, )].' Using the available latent heat5
and x-ray' data, we verified the relationship I.—(, '

over the range 14%-28% 10CB in 9CB (a factor of 3 in

g, ) and used it to estimate g, for concentrations below
14% where measured values of g, are unavailable. An
upper limit for the latent heat is used to estimate g, for
8CB. The lower limits on the error bars on g, in Fig. 1

represent the largest g, seen in the x-ray data' for each
sample. Figure 1 shows dv/de vs g, so obtained for the
concentrations studied by Ocko, Birgenaue, and Lit-
ster. '

In Fig. 1, each data point represents a different mix-
ture corresponding to the composition range 0%-28.2%
10CB in 9CB and pure 8CB. Using only points where
the uncertainty in g, is insignificant, the straight line
describing the data is dv/de=(, /zo with microscopic
time F0=7.5 x 10 sec. Taking a typical diffusion con-
stant for the 1V and A phases, D =4X 10 cm /sec, at
similar temperatures, ' in time zo a molecule diffuses
—6 A., adequate to relax the smectic order parameter.
A cubic HLM term in the free energy would result in a
crossover at large g, to a slower increase of dU/de with

The latent heat data suggest that such a crossover is
operative for pure 9CB and 8CB.

The magnitude of dU/de-10 m/sec in Fig. 1 shows
that N-A interfaces grow nearly as easily as solid-liquid
interfaces in simple atomic systems. Computer simula-
tions on Lennard-Jones systems and experimental data
on Si are consistent with a slope of the same magnitude.
Clearly, the weakness of the first-order transition con-
tributes to the rather fast growth of these liquid-crystal
interfaces.

By combining the fact that it is unusual, requiring
considerable experimental skill, to observe a moving
front at second-order transitions with the fact that the
dynamical signature of first-order transitions is qualita-
tively different from second-order transitions, we have
proposed a novel experimental method to probe phase
transition order. We find experimentally that the dy-
namic signature of the nematic-smectic-A phase transi-
tion in many compounds, " even some with latent heats
too small to measure, is consistent with a first-order tran-
sition. Making contact with the coherence length atT„'we found in a regime (small enough g„large
enough latent heat) where the HLM cubic term is still
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small, that dv(e)/de=(, /ro with re=7.5X10 sec.
The more first order the transition, the slower the front
propagates. In a longer version of this paper, it will be
shown that data for smaller latent heats are consistent
with a crossover to the scaling form associated with a
HLM cubic term. Our dynamic measurements also
pose new questions that deserve further study: (i) Why
is the observed contrast so large? (ii) How does director
relaxation influence interface dynamics? (iii) Why is a
systematic dependence of the interface velocity on the
direction of propagation not observed?
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