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Molecular Dynamics of Tethered Membranes

Farid F. Abraham and W. E. Rudge
IBM Research Division, Almaden Research Cenier, 650 Harry Road, San Jose, California 95I20-6099

M. Plischke
Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada V52156

(Received 11 January 1989)

By molecular-dynamics simulation, we investigate the possible existence of a crumpling transition for
a model of tethered membranes, where the particles are tethered by a continuous potential. For distant-
neighbor interactions, the potential is repulsive and contains a variable hard-core diameter parameter.
By varying this parameter, we are able to study in detail the eAect of self-avoidance. Our results suggest
the interpretation that self-avoiding two-dimensional tethered membranes are asymptotically flat, even
without an explicit bending rigidity, and that there is no crumpling transition except for "phantom"
membranes.

PACS numbers: 64.60.—i, 82.65.—i

In recent years there has been considerable interest in
the large-scale properties of random surfaces in the con-
text of both field theory' and condensed-matter theory.
Condensed-matter systems in which surfaces and inter-
faces play a significant role include microemulsions, lipid
bilayers, vesicles, and suspensions of monolayers of ex-
foliated layered crystals. While much of the statistical
mechanics of two-dimensional surfaces embedded in a
higher-dimensional space remains to be understood, it is
known that there is no single universality class which en-
compasses all such systems.

Recently, Kantor, Kardar, and Nelson introduced an
interesting model of random surfaces, namely, the teth-
ered membrane. In this model, particles (hard spheres
of diameter o) are joined in a fixed pattern by Ilexible
tethers of length l. For l ~ (3)'I o, the membrane is
self-avoiding in that it cannot intersect itself without the
overlap of hard spheres. Without further parameters,
the properties of this membrane are temperature in-
dependent and determined by the entropy. Kantor, Kar-
dar, and Nelson argued, on the basis of a Flory mean-
field theory, that such membranes are crumpled; i.e., the
radius of gyration scales as Rg —L', where L is a charac-
teristic size of the membrane, and the exponent v takes
on the value 0.8 for two-dimensional membranes free to
move in three-dimensional space. Monte Carlo simula-
tions and renormalization-group arguments seemed to
support this conclusion.

Recently, Plischke and Boal have questioned this re-
sult on the basis of larger and more detailed simulations.
By examining the shape of tethered self-avoiding mem-
branes they reached the conclusion that these systems
are asymptotically Aat at large length scales. In particu-
lar, they found that the eigenvalues of the inertia tensor
have the scaling behavior X i —L " and k3 —L "', where
k] and X3 are the smallest and largest eigenvalues, re-
spectively. The exponents were consistent with the

values v] =0.7 and v3= 1.0, corresponding in the limit
of large size to a rough but flat object.

These results are surprising when taken together with
the fact that "phantom" membranes are crumpled and
undergo a finite-temperature transition to a Aat phase if
the membrane has explicit bending rigidity. In a phan-
tom membrane the particles interact only with nearest
neighbors on the network, and there is a great deal more
phase space available. The ideal phantom membrane
consists of particles with zero diameter, and one finds '

in the absence of bending rigidity that Rg = [ln(L)] '

for large L. The two results may be reconcilable if there
is a critical value of the particle diameter (for fixed teth-
ering length) at which there is a transition from a crum-
pled phase to a Aat phase. We note that the ideally
crumpled (Gaussian) phase of the phantom membrane
cannot exist for any nonzero diameter of the particles
since [ln(L)]" /L ~ 0 as L~ ~ for a two-dimensional
membrane in a d-dimensional space.

In this Letter we report the results of large-scale
molecular-dynamics simulations of a model for tethered
membranes. Our model is slightly different from that of
Refs. 4 and 6 in that tethering is enforced by a continu-
ous potential. The particles on the network are arranged
in a triangular array and interact with their nearest
neighbors through the potential

4e[(1/r)" —(1/r) +1/4], 0& r &2'I',
VNN(r) ='0, 2' ~ r & 2'I +l, (1)

4e[(1/r') ' —(1/r') +1/4], 2' +l ~ r,

where r'=2(2'I )+l —r. The region 2'I &r &2'I +l
is thus force free and equivalent to the Aexible string of
other models ' of tethered membranes. In our calcula-
tions we have taken l =0.5. Self-avoidance is generated
by the interaction between particles which are not
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nearest neighbors on the network. We take this interac-
tion to be

4p[(rr/r) "—(rr/r)'+1/4], 0 «(2' 'rr,
Vd( )=

() 2 /s

with o. a variable parameter. The parameter cr is a mea-
sure of an "efl'ective" hard-core radius of the particles.
The case o.=0 corresponds to the phantom membrane;
o.=l to the strongly self-avoiding membrane in which
self-intersections are impossible. We have considered
finite systems that are hexagonal in shape and charac-
terized by a linear dimension L,. A hexagonal sheet of
size L contains (3L +1)/4 particles. We have simulat-
ed membranes up to size L =75 (4219 particles) and for
10 to 8&10 total time steps, the longer times corre-
sponding to the larger clusters. The largest previously
reported simulations were for membranes with L =19
(271 particles). The procedure is a straightforward
molecular-dynamics calculation. The membrane is ini-
tially in a flat configuration and the particles are given
random displacements and zero velocities. All clusters
equilibrate to a mean reduced temperature kgT/e be-
tween 0.6 and 0.7, and have zero total linear and angular

momentum. The classical equations of motion are in-
tegrated forward in time, and the appropriate micro-
canonical ensemble averages are calculated.

Both the phantom and self-avoiding membranes are
characterized by long relaxation times and large fiuctua-
tions in equilibrium. Figure 1 shows snapshots of mole-
cular-dynamics configurations which display folding of
the 4219-atom particle membrane, an effect which con-
tributes to slow relaxation and large Auctuations. The
figure shows four snapshot configurations at (0.65, 0.80,
0.95, and 1.1)x10 time steps, each configuration being
viewed along the z axis (left-hand picture), the y axis
(upper right-hand picture), and the x axis (lower right-
hand picture), respectively. The membrane is initialized
about the x-y plane. These snapshots show the "folding"
motion, which typically has a period of =5&10 time
steps for this large size cluster. Between these folding
configurations, the membrane returns to a nearly "Aat"
hexagonal form. In order to determine if our results are
characteristic of equilibrium, we have calculated the au-
tocorrelation functions of the macroscopic variables of
interest and have estimated the relaxation times. In all
cases, the molecular-dynamics simulation was carried
out for at least 100 such relaxation times and, except for
I.=75, for a much longer period.

The essential results of our calculations are displayed
in Figs. 2 and 3. In Fig. 2 we plot ln(Rg) as a function
of ln(L) for a range of cr. The straight lines joining the
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FIG. 1. Configurations of a self-avoiding tethered mem-
brane of 4219 particles (L =75) and o =1. The individual par-
ticles are denoted by dots, and tethered bonds are not drawn.
From top to bottom, the diff'erent views for the four con-
figurations are at times (0.65, 0.80, 0.95, and 1.10) &&10 time
steps, respectively.

FIG. 2. Leg-log plot of the radius of gyration Rg of tethered
membranes for various values of the parameter cr. Straight-
line segments are drawn through the data points and have slope
equal to the eff'ective exponent v(L) which, for all |7~0, in-
creases with L and is consistent to the asymptotic value v(~)
=1.
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FIG. 3. The shape parameter A =A, ~/X3 plotted as a function
of c. for various L. As discussed in the text, we believe that this
shows that tethered membranes with a ~ 0.2 are asymptotical-
ly Oat and suggests that the same conclusions hold for all
o.)0.

data points have a slope equal to the efI'ective exponent
v(L) in the scaling relation Rg —L'. We see a typical
crossover eA'ect toward larger values of v as L becomes
larger for all values of a, except o. =0. For o =1, the ex-
ponent v is unity. The data for 0.4 ~ a ~ 1 strongly sug-
gest v(~) =1 for these cT's. For o.=0.2, we did not
simulate large membranes because of the large computa-
tional burden, and the finite-size effects dominate. But
we conjecture that this system also has v(~) =1. By
contrast, the decreasing eA'ective exponent of the phan-
tom membrane is consistent with the expected logarith-
mic functional form Rg —(lnL) 'l and was verified on a
semilog plot.

We have also determined the eigenvalues of the inertia
tensor I, the matrix elements of which are given by
I~ =((r~ —(rl))(r —(r ))), where the angular brackets
indicate an average over a molecular-dynamics con-
figuration. The sum of these eigenvalues is equal to Rg
for the particular configuration. We denote the smallest
eigenvalue by &.&, the largest by k3, and in Fig. 3 display
the "shape" function A =A. i/) 3 as function of a for vari-
ous L. The curves are a guide to the eye.

For all a ~ 0.2 the shape function decreases with in-
creasing L, indicating that the membranes are becoming
more flat as they become larger. Conversely, the phan-
tom membrane becomes more symmetric as the size is
increased. We have analyzed the eigenvalues in terms of

the assumed functional forms X~~L " and find that the
data strongly support v2=v3=1.0 for a~ 0.4 and are
consistent with v~ =0.8, a somewhat larger value than
that reported in Ref. 6. For o =0.2, the finite-size
eA'ects that are also apparent in Fig. 2 prevent an accu-
rate determination of the exponents.

The data presented in Fig. 3 also suggest that any de-
gree of self-avoidance may lead to a fiat configuration at
large L, although more data for low a are clearly desir-
able. The values of tT at which the curves for Li and L2
intersect [A (L 1 ) =A (L2) ] decrease steadily as the
values of L ~ and L2 increase. We can interpret these in-
tersection points as a sequence of approximations to the
critical value o., at which an infinite membrane becomes
flat, and we see that this value is clearly less than 0.2 and
may well be zero. If this conjecture is correct, the teth-
ered membrane has the property, also found in polymers,
that there is a single fixed point which controls the
large-scale behavior of the system no matter how small
the hard-core diameter of the particles. The addition of
bending rigidity to the Hamiltonian can only make the
system more flat, and we therefore conjecture that there
is no finite-temperature crumpling transition in self-
avoiding tethered membranes.

The fiat phase found, at least at large cr, also seems to
be intrinsically interesting. The fact that the smallest ei-
genvalue of the inertia tensor diverges as L ' with
vt =0.8 indicates that the membrane is rough. At the
moment we have no analytic theory which predicts this
behavior although the works of Nelson and Peliti and of
Aronowitz and Lubensky on solid membranes do pre-
dict a nontrivial exponent for the transverse correlation
function.
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