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Kinetics of Random Sequential Adsorption
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We present the first kinetic analysis specifically applicable to the random sequential adsorption (RSA)
process in the intermediate coverage range. Our method is applied to hard disks adsorbing on a Oat, uni-
form surface. Exact analytic expressions are derived for the first three coeKcients of a power series for
the rate of adsorption as a function of the coverage 6. Comparison with computer simulations shows
that the third-order expansion describes the RSA process to an accuracy of better than 1% up to a cover-
age of 30%, i.e., up to 55% of the known jamming limit.

PACS numbers: 68. 10.Jy, 02.50.+s, 82.65.—i

The adsorption of proteins and latexes on solid sur-
fac=s is often an irreversible process' which can be de-
scribed as a random sequential adsorption (RSA). In
this process one attempts to place immobile objects at
random on a surface such that they do not overlap. Be-
cause of the condition of immobility, RSA configurations
diAer from their equilibrium counterparts.

Several authors have derived, for a one-dimensional
RSA, an analytic expression for the coverage versus
time. ' In two or more dimensions, the asymptotic form
of the adsorption rate and the magnitude of the cover-
age in the jamming limit (54.7% in two dimensions for
disks) have been determined. The only analysis of the
RSA process at low to intermediate coverages is due to
Widom who showed that in the expression for the ad-
sorption rate in powers of the coverage 0 the coeKcients
of terms up to 6 are related to the virial coefficients of
an equilibrium system. His argument, based on the po-
tential distribution method, ' gives no clue to the calcu-
lation of higher-order coeKcients. This basic result has
remained largely unnoticed so that rude Langmuir
models are still used'' ' to describe adsorption experi-
ments involving proteins or other particles on solid sur-
faces. We emphasize that no kinetic theory specifically
applicable to the RSA process in the intermediate cover-

age range for two or higher dimensions has been pro-
posed. In this Letter we present a new method, based on
simple geometrical and statistical considerations, which
allows the exact evaluation of terms up to order 0 . We
also compare the results with computer simulation. The
expansion of the adsorption rate up to the 8 term de-
scribes the process with an accuracy of 1% up to a cover-
age of about 30%.

For convenience, we treat the case of hard disks ad-
sorbing on a Aat, uniform surface of area which we set to
unity. Each disk of diameter cr has an exclusion circle of
area q& (=trcr ) devoid of the centers of other disks.
Two disks form a pair if their exclusion circles overlap.
A pair separated by a distance r (cr (r (2cr) excludes
an area q2(r) which is less than twice the single-particle
excluded area q~ by an amount A2(r) =2q& —q2(r).
A2(r) is the area common to the two exclusion circles.

In general, dN/dt =Kg where iV is the number of ad-
sorbed particles at time t and @ is the average fraction of
the surface available to the center of a new disk.
Without loss of generality we set El=1.

It can be shown that

&= 1 —S(+S2—S3+S4—.. . ,

where S~ =Wq~, and for n ) 1

(2)

where A, (r ~, . . . , r„) is the area common to the ex-

clusion circles of n particles adsorbed at the positions
defined by the vectors r~, . . . , r„and p (r~, . . . , r„) is(n) r

the so-called generic distribution function. '
p

" (r f,
. . . r„)dr&. . . dr„represents the probability that a parti-
cle will be found in the element of surface dr~ at r~, a
second in dr2 at r2, etc. We will not elaborate on the
proof of (1) here, but only note that each new term
corrects for the over counting in the previous ones Ie.g.,
for pairs, recall that A2(r~, r2) =2q~ —qq(~ r~ —r2~ )].
The proof can be found in the earliest paper on scaled
particle theory, ' where it applies to har (3)d spheres and re- S2=J, A (r)2& (r)2dr.
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versible equilibrium configurations. However, since the
proof involves only geometrical arguments, it applies to
both the RSA as well as the equilibrium case. Note that
for disks of only one size, terms beyond S5 do not con-
tribute because the geometrical factors 4„, n & 5 are
necessarily zero.

If we denote by iV2(r) dr the number of pairs per unit
surface characterized by a center to center distance be-
tween r and r+ dr, S2 can also be written in the form:
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It turns out that this expression is more convenient for
the calculation of S2. For RSA, N2(r) can be deter-
mined, up to a certain order in N, from the probability
that a new particle forms a pair of separation r with one
of the N particles already adsorbed. To see how this
may be accomplished, consider a particular particle, pre-
viously adsorbed and place the origin of a polar coordi-
nate system (r, B) at its center. For a newly adsorbed
particle to form a pair with this previous one its center
must lie in the interval o. & r & 2o so that the two ex-
clusion circles will overlap. Suppose its center is to be
placed in the element of area r dr dB. For this to be pos-
sible there must be room for its exclusion circle, i.e.,
there must be a circular region (with center at r dr dB),
of at least radius a, devoid of the centers of other disks.
The probabilities for this is given by

po 1 p 1 p2 (4)

where pl is the chance that exactly one disk center is in
the designated region and p2 is the chance that exactly
two centers are in the region, etc.

Consider pi. We are assured that the center of the
one disk cannot lie in the region of mutual overlap of the
two exclusion circles since the exclusion due to the previ-
ously adsorbed disk forbids it. This leaves only the area
ql —A3(r) for its possible location. But it could lie any-
where within the unit area of the surface so that the
chance that it lies in ql —A2(r) is given by the fraction
of the total (unit) area which ql —A2(r) represents.
Since there are X—1 choices for this particle, the
chance that any one center lies in ql —A2(r) while the

It should also be clear that p2 must be of order N .
Thus, we may write

pp = i —[q, —A, (r)]N+O(N') .

Now the total area accessible to the center of the new
particle is 1 —

q lN+ 0(N ), so that the chance
P (r,N)r dr dB that it adsorbs in r dr dB is

1 —[ql A2(r)]N—+0(N )
1 —q, N+O(N')

= [1+NA2(r)+ 0(N )jr dr dB.

P (r,N)rdrdB= rdrdO

Then we arrive at the following equation for N2(r, N):
dN2(r, N)

=2zrp(r, N)N
d%

=2zr/1+NA2(r)+0(N )lN . (9)

Integrating (9) with respect to the initial condition
Nq(r, N =0) =0 and substituting in (1) and (3) we ob-
tain

remaining N —2 are outside is

pl =(N —1)[ql —A2(r)]P[ql A2(—r),N —2], (s)

where P [q l A2—(r ),N —2] is the chance that the
remaining N —2 particles are outside the designated
area. P is close to unity. Indeed, as N 0, P 1.
Thus the leading term in an expansion of P in powers of
N is of order zero.

As a result, to first order in N

pl =N[ql —A3(r)].

pRsA =1 —Nql+ —,
' N J 2xrA3(r) dr+ —,

' N 2xrA2 (r ) dr —S3 +0(N ), (io)

where the suffix RSA distinguishes S3 from S3, the quantity referring to the equilibrium situation. This is the basic
relation for RSA kinetics of disks on a surface. The first two integrals in (10) can be evaluated analytically. However,
the direct calculation of S3 is not obvious. A key observation is that, to order %, S3 =S3q. For equilibrium
configurations p (rl, r2, r3) =N +0(N ). ' On the other hand, for an RSA process, up to the order of N, we have

dN3 ' (rl, r2, r3) drl dridr3 = [Nq(rl, r2) +N2(rl, r3)+N2(r2, r3) 1 drl dr2dr3 = [3N +0(N )] drl dr2dr3.

N, {r)= ,' N'2~rg(r), — (i2)

where g(r) is the pair equilibrium correlation function.
Expanding g(r) to first order in N, we have' g(r)
=gp(r)+Ngl(r)+0(N ) where gp(r) =H(r —a.) and

gl(rl2) H(rl2 o)J f(r13)f(r23) dr3

After integrating we find that N3 (rl, r3, r3) =N
+0(N ). Equation (2) then implies that S3 =S3
+0(N ). We therefore proceed by determining
from (1) and representing it in terms of the virial
coefficient. In the equilibrium case:

i Here, f(r) =e " ' t" —1 is the Mayer f function' and
H(x) is the Heaviside (unit step) function. Thus

t' 2o.

p,q=i Nql+ —,
' N „2nrA3—(r)dr

& o.

f 2o
+ —,

' N J 2ycrA2(r) dr —S3 +0(N ) . (14)

Comparing (10) and (14) we find, with Widom, that
terms to order N are identical. From scaled particle
theory, ' or the statistical geometric approach ' the
chemical potential of the hard-sphere system is related to
0.q by

176

H(rl2 Q)A2(rl2) ~ (i3) p =pp+ k T lnN —k T In&,q, (is)
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where po and kT have their usual meaning. The Gibbs-
Dehum equation then leads to

y,q
= I —2B2N+ (B2 —

~ B3)N

+[3B2B3——', (B2+B4)]N +O(N ), (16)

where Bk is the kth virial coefficient. Hence by compar-
ing (14) and (16):

S3 /N = —,
' 2trrA2 (r) dr —3B2B34 g

+ —, (B2 +B4)+0 (N ) . (17)

By use of the known values of 82, 83, and 84, ' we then
have

&RsA =dN/dt = 1 48+ 6J3/tr8

+ ——,8'+O(8'), (Is)
3tr'

where 8 = trcr N/4. In the equilibrium case, the
coe%cient of 0 is 2.4243.

To test the range of validity of (18) we determined
dN/dt as a function of coverage with use of computer
simulations. We give full details of these calculations
elsewhere, but brieIIy, hard disks are placed at random,
subject to the RSA constraints, in a square cell with
periodic boundary conditions. dN/dt is equal to
I/(N~(N)) where N~(N) is the number of attempts to
adsorb the Nth particle and angular brackets denote an
average over separate simulations. Our results represent
an average of 25000 such simulations. It can be seen
from Fig. 1 that the 0 term represents more than a

small correction in the intermediate coverage range.
With this term, RSA kinetics are described accurately
up to a coverage of about 0.3. At higher coverages, we
enter the asymptotic regime (eventually the jamming
limit) where the kinetics are well known. Thus we
now have an almost complete description of the RSA
process.

Since adsorption experiments are very difficult to per-
form close to the jamming limit, the most effective way
to demonstrate that adsorption follows an RSA process
is to measure the 83 term of (18). In this context, it is
important to emphasize that terms up to and including
0 contain no information concerning the nature of the
adsorption process (i.e., the degree of irreversibility).
This implies that such an expansion (to second order)
applies to any adsorption experiment of hard disklike
particles.

Our method can be extended to noncircular particles
and mixtures. In the latter case it is necessary to intro-
duce two Ill functions and correspondingly two coupled
nonlinear equations.
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FIG. 1. Rate of adsorption, dN/dt, as a function of surface
coverage, B=ttcr N/4 The solid curve shows th.e averaged re-
sults of computer simulations where each disk has an area rela-
tive to the surface of 0.002. The dotted line shows the expan-
sion (16) to order 9; the dashed line shows the expansion (16)
to order 0 .
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