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Slow Bragg Solitons in Nonlinear Periodic Structures
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We show that a new class of optical solitons is possible in nonlinear periodic structures. These waves
can propagate undistorted even though their power spectra lie well within the frequency band gap of the
periodic structure and even though their carrier frequency is very close to the Bragg resonance. Analysis
shows that these Bragg solitons can exhibit velocities which are orders of magnitude than the speed of
light in the unperturbed medium.

PACS numbers: 42.81.Dp, 42.50.gg

Wave propagation in periodic structures is associated
with many interesting and potentially useful phenomena.
A direct outcome of the Floquet-Bloch theory, which

plays a fundamental role in the theory of wave propaga-
tion in periodic media, is the existence of forbidden fre-
quency bands or band gaps which are located around the
Bragg frequencies. ' Any wave whose frequency lies
within such a forbidden band will undergo Bragg reAec-
tion when falling on the periodic structure. In the opti-
cal case, if the periodic variation of the refractive index
is relatively weak and if the frequency of the light wave
is close to the Bragg frequency, then the formalism of
coupled-mode theory can be successfully employed. In
1978, Hill et a/. found that Ge-doped fibers could exhibit
a certain photosensitivity process (in the blue-green spec-
tral region) which could be used to write a permanent in-
dex grating along the axis of an optical fiber. In princi-
ple, these fiber periodic structures can be very long (hun-
dreds of meters) provided that the coherence length of
the exposing laser is of the same order. The continuous
wave (cw) response of a nonlinear periodic structure was
first investigated by Winful, Marburger, and Garmire
and was found to involve bistability. Subsequently,
Winful proposed the use of nonlinear fiber gratings for
optical pulse compression and for soliton propagation.
According to his analysis, these are possible as long as
the carrier frequency of the optical pulse is within a
spectral region where the fiber filter exhibits relatively
high transmission and negative dispersion (outside the
frequency band gap). Recently, Chen and Mills and
Mills and Trullinger have shown that standing-wave
(immobile) optical solitons can exist in nonlinear period-
ic media even though their light frequency lies within the
forbidden frequency band. Finally, Sipe and Winful

have treated the problem of wave propagation in non-
linear periodic structures in terms of a nonlinear
Schrodinger equation. However, their approach impli-
citly-assumes that the structure is weakly dispersive and
it does not account for the existence of reAected waves.
Thus this latter formalism is perhaps more suitable for
waves whose carrier frequency lies far away from a
Bragg resonance.

In this Letter, we show that a new class of (mobile)
optical solitons is possible in nonlinear periodic struc-
tures. These waves can propagate undistorted even
though their carrier frequencies are very close to the
Bragg resonance and even though their power spectra
fall well within the frequency band gap. Our analysis
shows that these solitons can move at speeds which are
much lower than the velocity of light in the unperturbed
medium. Thus, here we will call them slow Bragg soli-
tons.

Let us consider a lossless, single-mode fiber periodic
structure. Furthermore, let us assume that this fiber is
polarization preserving and that its refractive index in-
creases (instantaneously) with the optical intensity.
Thus the refractive index of this fiber periodic structure
is given by

n =np+ni cos(2ttz~A)+n2 IE I

'
where no is the eAective index of the unperturbed wave-
guide, n ~ is the depth of the periodic index modulation of
the structure and is taken to be rather weak (n ~ && n p), A
is the spatial period of the index grating, n2 is the non-
linear Kerr coefficient of the material, and E is the elec-
tric field of the optical wave. In Eq. (1) we have as-
sumed for simplicity a sinusoidal index grating.

Let us decompose the electric field into a forward and
backward wave, i.e.,

E =Ef(z, t )exp[i(ppz topt )I+Eg (z, t )exp[ i (ppz+ topt )],
~here Ef and Eb are, respectively, the envelopes associated with forward and backward components of the optical field,
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Pp =n pcpp/c is the unperturbed propagation constant, cop =2ttc/kp is the carrier angular frequency of the wave, and kp its
free-space wavelength.

Furthermore, let us assume that this fiber filter is very long (say hundreds of meters). In that case, by employing the
formalism of coupled-mode theory and by assuming slowly varying envelopes, Ef and Eb obey the following pair of cou-
pled evolution equations:

+ + icEb «p( —2i~z)+ y( I Ef I
'+2

I Eb I )Ef 0,6Ef 1 HEI
Bz v Bt

'dEb 1 6Eb—i —— +x'Ef exp(2i8z)+ y(I Eb I
+2

I Ef I )Eb =0,
Bz v Bt

8 Ef 1 8 Ef =v Ef,
tiz 2 v2 tlt 2

(4)

where v=c/np is the speed of light in the unperturbed
waveguide, x trn&/Xp is the coupling coefficient of the
structure, and 6 = (np/c) (cop —cote) is a parameter
which measures how detuned the system is from the
Bragg angular frequency mz. The Bragg frequency mz

is given by cote =tzc/npA =2tcc/k~, where A, z is the Bragg
free-space wavelength. y in Eq. (3) is the nonlinear
coefficient, y=tzn2/Xp. The nonlinear terms in Eq. (3)
contain self- and cross-phase modulation terms and they
implicitly account for nonreciprocity effects. In Eq.
(3) we have neglected any material and/or waveguide
dispersive eA'ects. It is well known that the dispersion
arising from the periodic structure itself dominates near
a Bragg resonance. '

The width of the frequency band gap can be readily
obtained by assuming that cop =roti or 6 =0 (Bragg reso-
nance) and by linearizing Eq. (3). In that case, the for-
ward envelope Ef obeys a relativistic Klein-Gordon
equation, that is,

integrable massive Thirring model which exhibits soliton
solutions. " The massive Thirring field is known to be to
some extent relevant ' ' to the sine-Gordon equation
which is typically employed in nonlinear optics as a sim-

ple model equation for the phenomenon of self-induced
transparency' ' (SIT). It would thus seem that there is
some kind of correspondence between the phenomenon of
SIT and what we are investigating here. As it will be
shown, both processes exhibit slow soliton waves and
some sort of resonance. In our opinion, the role of the
two-level absorption resonance involved in SIT is played
here by the Bragg reflection process. A similar point was
made by Chen and Mills. Even though the soliton solu-
tions of Eq. (5) can be obtained in general for any arbi-
trary detuning parameter o, these solutions are rather
involved when oWO and we will report on them else-
where. Here we treat only the simple case of Bragg reso-
nance, i.e., cop =co~ or o.=0.

For et=0, it can be shown that Eq. (5) exhibits the
following soliton solution (strictly speaking it is a solitary
wave):

with a similar equation for Eb. If we write Ef as a time
harmonic field, i.e., Ef =exp[i(Kz —At)], we can then
obtain the dispersion equation for the structure K = [(0/
v) —x ] '~ which shows that K becomes imaginary for
all frequecies cp =cpti+0 within the range cog —Acp/2

& cp & cpti+acp/2, where Acp is the width of the forbid-
den frequency band and is given by d, co=2xc/np. Thus
for frequencies within the band gap, the forward wave
will decay and its energy will be transferred to the back-
ward wave through the process of Bragg reAection.

By adopting the following dimensionless variables, x
=(K/2)(z+vt), y =(rc/2)(z —vt), a =b/x, U=(y/
K)' Ef, and V=(y/x)'t Eb, Eq. (3) takes the normal-
ized form

U=Asech't (z/zp)exp(ie),

V = —p 'A sech ' '(z/zp)exp(i+),
where

8 4 4

e =+p+ — tan ' sinh
p +4p +1 zp

1 3p +4p —1
N =Wp+ — tan sinh

2 p +4p +1 zp

2

u 8+4u 4+1
Z

Ve

(7)

(10b)

i + vexp[ —2ia (x+y) l + ( I U I
'+2

I
v

I
2» =0,

Bx
(5)

V Ve4 e

v+v,
(1 la)

+Uexp[2ia(x+y)]+ ( I V
I

'+ 2
I U I

') V =o.
8g

If one neglects the self-phase modulation terms (I U I U
and

I
V

I V) in Eq. (5) and assumes Bragg resonance,
e.g. , cop=roti or cr=O, then Eq. (5) reduces to the fully
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r in the above equations is a time coordinate frame moving at the eA'ective group speed u, of the wave. Equation (1 lb)
shows that the speed v, of the wave is always lower than v ( l

u
l

&
l u, l ) and that it can be positive (forward solitons)

or negative (backward solitons). ro is the temporal pulse width of the wave which determines through Eqs. (11) the
speed of the wave and the auxiliary parameter p. The parameter i; is real and the quantity p in Eq. (11a) is always
positive since l el &

l u, l. A is associated with the amplitude of this wave and 4'o is an arbitrary phase constant. The
total field of this wave can be obtained by using Eq. (2), and is

F =(x/) ) "'isech'i'(r/ro) [exp[i(e+ poz)] —ii'exp[i(e —poz)]]exp( —
indoor),

and hence its intensity is given by

l
F.

l
'=(x/y)A'sech(-. /ro) [1+p —2p sech(r/ro)cos(2Poz) —2p tanh(z/zo)sin(2Poz)] .

(12)

In deriving Eq. (13) we have used the relations cos(@—e) =sech(r/ro) and sin(e —6) =tanh(r/ro), which can be
readily obtained from Eqs. (8) and (9).

We now interpret these results. When 2xvro»1, then lU, /vl ((I (slow solitons) and p= l. If, on the other hand,
2icuro(( 1, theil

l u, l
~

l
v

l
and thus p 0 or ee. The range 0 & p ( 1 corresponds to forward Bragg solitons, whereas

for 1 (p (~ the solitons move backwards. If p =1, then in principle (for lossless media) an immobile Bragg soliton is
possible which is related to that found by Chen and Mills and Mills and Trullinger . From the above analysis, the two
components (Ef and Ft, ) of this soliton wave move together and in doing so they produce interference effects in the
wave s intensity profile. For a given nonlinear periodic structure, as ro increases not only is it the case that l u, /u l (& I

(or p = 1) but also the power spectrum of the soliton wave is well confined within the frequency band gap and further-
more its central frequency is close to cori. More specifically, for p. = 1 (2K pro»1)

F. = (4x/3y) '"sech'"(r/ro)exp[i( —,
' rr++o —odor)]

x [sin(Poz) [I+sech(r/zo)]'i' —sgn(r)cos(Poz) [1 —sech(r/ro)] 'i'] . (14)

The maximum intensity involved in this slow wave
occurs at z = 0 and it is approximately equal to
I& 1m'x=«/3y' «n~l& lmax= 3 ni Thus, t."e Bragg
Alter will become "transparent" if the maximum non-
linear index change is comparable to n]. If, on the other
hand, zo decreases, then v, starts to approach v from
below and thus the Bragg soliton becomes considerably
more mobile. This regime corresponds to p 0 for for-
ward solitons and to p ~ for backward waves. From
Eqs. (12) and (13), as p 0 the forward wave dom-
inates and the interference eAects are suppressed. For
p ~ the backward wave dominates. However, as zo

decreases, the spectral width of the wave is no longer
contained within the frequency gap and furthermore the
central frequency of this soliton can be far away from coo

or mq. This is due to the strong chirp involved in the
phases of U and V and in eAect these waves will behave
as if they had been excited at a frequency ~0 which is far
away from mz. This explains the high mobility of these
latter solitons and the small amplitude of the back-
reAected signal. What is interesting, however, is that
their field profiles vary as sech'i (r/ro) and not as hyper-
bolic secants that a nonlinear Schrodinger formalism
would have predicted. Strictly speaking slow Bragg soli-
tons can occur only when 2Kvzo» l.

As an example, consider a single-mode Aber periodic
structure which is to be operated at ko=kp =0.52 pm.
This Aber has an eAective core area of 5= 10 pm and
its refractive index is no=1.46. The Kerr nonlinearity of
glass is n2=1.2X10 (m/V) and the index modula-
tion n~ is assumed to be n] =10 . Therefore the cou-

pling coefficient of the structure is K=6 m ' and the
frequency width of the gap is hco/2rr=400 MHz. The
velocity of light in the unperturbed medium (c/no) is
v=2.055&&10 m/s. If the temporal width of the Bragg
soliton is taken to be ro=10 ns, then u/u, =25. From
Poynting's theorem, the peak power of this wave can be
evaluated and it is approximately 423 W. Furthermore,
the spatial extent of the Bragg soliton, zo = v, zo, is —8.3
cm.

In conclusion, we point out that there are still many
interesting issues regarding these Bragg solitons that re-
quire further investigation. These include their stability,
their dynamics, and of course the initial conditions
necessary to excite these slow "bullets" of light.
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