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Accelerating Reference Frame for Electromagnetic Waves in a Rapidly Growing Plasma:
Unruh-Davies-Fulling-DeWitt Radiation and the Nonadiabatic Casimir El'ect
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Shortly after Hawking s prediction of thermal radiation from black holes, it became apparent that ob-
servers in accelerating frames should see a Planck distribution of electromagnetic radiation (Unruh radi-
ation). Since an acceleration g =980 cm/sec produces a radiation temperature of only —4x10 K,
the detection of such thermal radiation is a major challenge. A nonlinear optical medium whose index of
refraction is changing rapidly with time accelerates zero-point quantum fluctuations. The sudden ioniza-
tion of a gas or a semiconductor crystal to generate plasma on a subpicosecond time scale can produce a
reference frame accelerating at —10 g relative to an inertial frame.

PACS numbers: 42.50.Wm, 03.80.+r, 42.65.Re, 52.50.Jm

In 1974, Hawking showed' that black holes can
evaporate by the emission of low-temperature thermal
radiation, now named Hawking radiation. Shortly there-
after, a closely related efrect called Unruh radiation be-
came apparent. According to Unruh and Davies, ob-
servers of the electomagnetic field in an accelerating
reference frame would see thermal radiation at a temper-
ature T,

kT = (ft/2')(a/c),
where a is the acceleration relative to an inertial frame, c
is the speed of light, and 6 and k are Planck's and
Boltzmann's constants, respectively. In a frame ac-
celerating at g =980 cm/sec, equivalent to the accelera-
tion experienced at the Earth's surface, this thermal ra-
diation is at a temperature of only 4x10 K. There-
fore, physicists hoping to observe this radiation have
sought out systems being subjected to extreme accelera-
tion. For example, Bell and Leinass have suggested
that the spin depolarization of electrons accelerating
around a synchrotron storage ring may be interpreted as
being due to such radiation.

The basic physical mechanism for this radiation is that
zero-point quantum fluctuations in an accelerating frame
become transformed into real thermal photons when
Fourier analyzed in terms of the photon modes (plane-
wave basis set) of an internal frame. The observer need
not experience the accelerating directly. DeWitt and
Davies argued that the zero-point field Auctuations near
an accelerating mirror are already being subjected to an
accelerating motion. In eAect, the moving mirror forces
a relative accelerating motion between the electromag-
netic quantum Auctuations and a stationary observer.
Remarkably, the conversion of zero-point quantum fluc-
tuations into real thermal photons is equally eA'ective
whether the mirror is advancing toward the observer or
receding away from him.

Of course, the acceleration of a physical mirror is sub-
ject to the same pragmatic limitations as the acceleration
of a physical observer. In this regard, we believe that

modern nonlinear optical techniques can help make
Unruh-Davies-Fulling-DeWitt (UDFD) radiation exper-
imentally accessible. Ideally, in nonlinear optics, we re-
gard the refractive index of a medium to be a time-
variable function totally under the control of the experi-
mentalist. If we observed the zero-point electromagnetic
field transmitted through a window whose index of re-
fraction is falling with time, the phase shift of the field is
the same as when reAected from an accelerating mirror.
In this sense, nonlinear optics is the experimentalist's
way to produce fast-moving mirrors.

Most nonlinear optical eA'ects tend to be small and os-
cillatory. There is, however, at least one nonlinear opti-
cal eA'ect which is very large and monotonic. When a
gas is suddenly photoionized, it turns into a plasma and
its index of refraction drops from 1 to 0. Some time ago,
the phase modulation associated with such a laser break-
down plasma in a gas was shown to produce nearly a
10% blue shift in the transmitted laser photon energy.
This is a very substantial eff'ect. Likewise, in a semicon-
ductor, the sudden creation of electron-hole pairs can
reduce the refractive index from —3.5 to 0 in a very
brief time period. When the electron-hole plasma is in-
duced by subpicosecond optical pulses, the phase modu-
lation can suddenly sweep up low-frequency waves by
many octaves. Indeed by lateral synchronization of the
excitation process, the moving plasma front can act as a
moving mirror exceeding the speed of light. Therefore we
can regard such a gas or semiconductor slab as an obser-
vational window on accelerating electromagnetic fields.

The relative motion of the observer and the field is
controlled by the rate of refractive index change or alter-
natively by the time-varying plasma density. In this pa-
per we will (i) attempt to solve for the time evolution of
the quantum field operators in a time-varying index of
refraction, and (ii) determine the feasibility of detecting
the UDFD radiation in a low-temperature semiconductor
experiment. We hope to show that an acceleration of—1023 cm/sec is feasible, and that the corresponding
UDFD radiation intensity should be sufhcient to allow
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experimental observation.
Let us consider a simple phase-modulation model for

plane waves in a time-varying index of refraction n(t)
The electromagnetic field at an angular frequency co and
wave vector k =noto/c is transmitted through a slab of
material of thickness z with initial refractive index np.
The decrease of refractive index with time t is expressed
as a Taylor series, n(t) =no —nt. The phase factor of
the wave becomes

of Eq. (3),

A(z, t) = g [bkAk(z, t)+bkAk (z, t)],
all k

(4)

where bk and bk are the annihilation and creation opera-
tors, respectively, appropriate to this basis set. Alterna-
tively, the field operator may be expanded in terms of a
conventional plane-wave basis set. With the usual choice
of normalization,

n pro
exp' i kz —c~t ' =exp' i

C
z — t —cot '. (2)

C

Ak(z, t) =c[2tz(h/co)] 't'exp[i(kz —cot)],

A(z, t) = g [a kA k(z, t)+a kA k(z, t)],
all k

(6)

Vx (VxA)+ (I/c )it A/itt —(4tz/c) J =0. (3)

The eAects of the plasma are represented by the current
J=NeV, where N(t) is the plasma density and V is the
fluid velocity. Using mV=eE=( —e/c)A, V can be
written as ( —e/mc)A and eliminated from Eq. (3). The
time variation N(t) expresses itself mainly through the
transverse electromagnetic wave frequency dispersion re-
lation co (t) =to„(t)+k c, where the plasma frequency
co„=4tzNe /m, and e and m are the electronic charge
and mass, respectively. Alternatively, the dispersion re-
lation could be derived from a dielectric constant:
td (t) =k c /n (t). In the discussion which follows, we
will assume that the refractive index n(t) could go both
up and down at the will of the experimentalist.

If a complete set of classical solutions Ak(z, t) of Eq.
(3) can be found, then field quantization ' is straightfor-
ward: A quantum field operator A(z, t) is introduced„
which obeys Maxwell's equations. It makes sense to ex-
pand A(z, t) in terms of the Ak(z, t) which are solutions

The frequency emerging from the slab of material is
shifted up according to co to(1+nz/c), which resem-
bles a Doppler shift for a velocity nz. Now allow the
thickness of the material slab z to become a variable
quantity which tracks a phase front z =et/n of the elec-
tromagnetic wave. Then the instantaneous frequency of
a phase front passing through the material is co co[1
+ (n/n)t], which resembles the Doppler-shifted frequen-
cy co[1+(a/c)t] seen by an accelerating observer. Be-
cause of the frequency sweep, these are known as a
"chirped" waves in nonlinear optics. Comparing these
frequencies, we see that a rapidly developing "plasma
window" induces a relative acceleration between an ob-
server and the electromagnetic field of a =c (n/n )
=c(ti~/co) =c/z. If the characteristic time z is in the
subpicosecond range, then an acceleration of —10 g is
feasible. Likewise, a more complicated frequency chirp
which tracks a relativistic acceleration can be accommo-
dated by including more terms in the Taylor series ex-
pansion for n(t).

To consider the field evolution in a plasma more rigor-
ously, let us write Ampere's law in the transverse
Coulomb gauge for the vector potential A, B =VX A and
V. A=O:

where the ak and ak are the annihilation and creation
operators, respectively, appropriate to the unperturbed
vacuum. A comparison of Eq. (4) with Eq. (6) shows
that the conventional plane waves Ak(z, t) evolve into
Ak(z, t) waves as the index of refraction changes. Gen-
erally the bk will differ from the ak, but they are related
by a Bogolyubov transformation

bk ~(&kk'ak' pkk'&k') ~

k'
(7)

t 1

Ak (z, t) =4 (t) exp'I i kz — co(t')dt'
dp (9)

Substituting Eq. (9) into Eq. (3) we find an equation for
the slowly varying amplitude A (t),

A —2imA —i& A =0. (10)

In the limit of moderate acceleration we may drop the A

A key role is played by the coefficients pkk which mea-
sure the admixture of annihilation and creation opera-
tors, or equivalently the admixture of positive and nega-
tive frequency modes caused by the perturbed vacuum.
The expectation number of the accelerated mode k as ex-
pressed in terms of the conventional vacuum state

I
0) is

&0
I bk bk I

0& =Z I pkk' I

'
k'

For us the challenge is to calculate the classical fields
Ak (z, t) and then the Bogolyubov coefficients bkk . In
the case of an instantaneous change in plasma density, a
classical solution has recently'' appeared. Likewise, a
step-function index change can be solved classically. A
simple Bogolyubov transformation of that classical solu-
tion yields an admixture of annihilation and creation
operators: akk =8kk (n+no)/2(non) ' and Pkk =6kk (n
—no)/2(non) 't, where n —no is the instantaneous step
change of refractive index and Bkk is the Kronecker 6'.

In this, our simplest and most important case, we see
that the induced photon occupation number will be of or-
der unity.

An interesting special case is the opposite limit: slowly
varying plasma density. Then it makes sense to write the
time-dependent solution of Eq. (3), Ak (z, t), as a slowly

varying amplitude times a rapidly varying phase,
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term in Eq. (10), as is usual in the slowly varying ampli-
tude approximation. Equation (10) then reduces to
2cuA = —rda or A(r) ee [rd(r)] '~2. Ai, (z, r) can be
written

Ai (z, r) =c[2xh/co(r)l '~'expIi kz— ru(r') dr'

This limit, as represented by Eqs. (9)-(11),mathemati-
cally resembles the accelerating mirror and black hole'
problems which yield a Bose spectrum. This would not
be expected in real, finite-duration experiments, since an
exact thermal spectrum evolves only asymptotically at
long times.

Generally, we wonld have to propagate the field

Ai, (z, r) out of plasma, through a boundary, and into a
conventional vaccum, or deal with a more complex
geometry and/or time dependence. In principle, the field

operators would follow the same time evolution as the
classical fields and the Bogolyubov coefficients Pki, would

be calculable. The presence of boundaries in the experi-
ments can make the Bogolyubov transformation rather
di%cult.

Since a plasma expels electromagnetic radiation below
its plasma frequency, it modifies that configuration of
zero-point quantum Auctuations responsible for the
Casimir' forces. If the changes are slow enough, the
response of the vacuum fiuctuations is adiabatic. On the
other hand, we are considering sudden nonadiabatic
changes which have the eAect of causing real transitions
and boosting the quantum Auctuations into real photons.
In that sense this process may be called the dynamic or
nonadiabatic Casimir eA'ect.

We will now consider the experimental parameters re-
quired to make these eA'ects observable. The very weak
excitation and long wavelength of UDFD radiation seem
most consistent with a semiconductor plasma in the pres-
ence of a low-radiation background and lattice tempera-
ture —1 K. A key requirement is that the UDFD radia-
tion not be overwhelmed by bremsstrahlung emission due
to electron-hole collisions in the plasma. Bremsstrahlung
emission is linked to momentum relaxation and dissipa-
tive absorption through KirkhoA"s law or equivalently,
the fluctuation-dissipation theorem. In eA'ect the re-
quirement is that the plasma response be purely reactive
and nondissipative, similar to the constraints on the non-
linear optical response in other vacuum modification pro-
cesses such as optical squeezing. '

One must distinguish between real electron-hole exci-
tation by a pUmp laser tuned in the bands and virtual
electron-hole excitation by a laser tuned just below the
Urbach tail of the band edge. Real electron-hole pairs
are produced by dissipative absorption of the pump laser
and are subject to momentum relaxation. Some long-
wavelength bremsstrahlung emission is inevitable for this

case. Virtual electron-hole pairs, on the other hand, do
not have this problem since their response is purely reac-
tive.

It is possible to design an experiment which would
discriminate against the bremsstrahlung emission pro-
duced by real electron-hole pairs. The carrier kinetic en-
ergy should be adjusted to present an optimal balance
between Coulomb collisions and deformation-potential
scattering. The injected carrier density should be no
more than the density required to produce a plasma fre-
quency equal to the observation frequency. Since UDFD
radiation responds instantly, and momentum relaxation
takes time, gating in the time domain vould also be
essential. Finally, heterodyne detection would discrim-
inate the phase structure of UDFD radiation from the
incoherent bremsstrahlung emission. Since the length
limitations of this Letter do not permit a full discussion
of this approach, we will emphasize the case of virtual
electron-hole excitation.

The Urbach absorption edge in a high-quality semi-
conductor crystal that is cooled to —1 K can be very
sharp. By tuning a pump laser into the transparent re-
gion just below the Urbach tail of a direct-gap semicon-
ductor, a large population of virtual electron-hole pairs
can be induced. The virtual occupation probability per
state is

~
gF. (ro~)

~ /~ 6 hco
~

-', where g is the transition
dipole moj[nent, m~ is the pump frequency, and Am is th-
detuning. Such virtual electrons are highly polarizable
since they respond as if they were bound by small detun-
ing energy Ah, m. Although their response is opposite to
that of free carriers, the rising and falling edges of the

semiconductor

Flo. l. (a) A geometry for the acceleration of electromag-
netic quantum fluctuations along a semiconductor dielectric
waveguide due to plasma formation. The direction of the sub-
picosecond pump pulses is shown by the small arrows. hv rep-
resents the Unruh radiation. (b) By curving the pump wave,
the plasma front can appear to move faster than the speed of
light.
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pump pulse will supply both signs of acceleration.
This high polarizability can be described in terms of a

conventional third-order nonlinear optical susceptibility
g{ )( —rd„, ru„, —

ru~, co~), where cu„ is the very low

UDFD frequency. Since the frequencies co~, co„and
co~+ ~, are all in the transparent gap of the semiconduc-
tor, the response is purely reactive. This g can be re-
garded as a quadratic electro-optic eff'ect similar to the
K err-type nonlinearity of CS2. But it can be much
larger due to its electronic doubly resonant character in

co~ and co„. The idea would be to make a near instan-
taneous step-function change in the refractive index. As
shown above, this induces —1 photon per mode, which
can be detected by beating against a local oscillator. For
example, optical rectification by means of a g process
in the same crystal can provide a local oscillator against
which to beat the UDFD signal. In this respect the ex-
periment would resemble a kind of single-cycle mi-

crowave squeezing. '

Optical excitation allows interesting Aexibility with re-
gard to the geometric and temporal reconfiguration of
zero-point quantum fluctuations. Figure 1(a) shows the
simplest possible geometry. A thin semiconductor wafer
is bombarded on both sides by a planar excitation pulse,
the idea being to commence electron-hole excitation
simultaneously throughout the sample. This mimics the
spatial independence of N(r) in Eq. (3). The far-
infrared dielectric waveguide modes of the semiconduc-
tor slab would be accelerated and decelerated. Figure
1(b) shows a traveling-wave plasma excitation which is

synchronized to exceed the speed of light. Mirrors pro-
duce the concave shape of the excitation pulses. This is

not a Cherenkov eAect since polarizability, not polariza-
tion, is moving.

From the above discussion it is clear that there are a
number of diA'erent ways of looking at this phenomenon:
It can be regarded as (1) Unruh-Davies-Fulling-DeWitt
radiation, (2) the nonadiabatic Casimir eflect, (3)
single-cycle microwave squeezing, or (4) the inverse
quadratic electro-optic efect with zero-point-photon in-
put waves.
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