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Scale Invariance of gA /g~ in Quark-Confining Potentials
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It is demonstrated that the spin distribution in the nucleon surface determines the value of g~/gv.
This ratio is shown to be scale invariant; it is sensitive to the surface thickness and to the type of quark
confinement (Dirac-scalar or -vector) and vanishes for pure vector confinement. A phase transition is
found from confinement to deconfinement when the ratio of vector to scalar confinement falls below a
critical value ( —1.0). Experiments to probe a Dirac-vector component in the (free or bound) nucleon
are proposed in the light of the CPT theorem.

PACS numbers: 12.40.Aa, 13.30.Ce, 14.20.Dh

Within the V—A theory for the charge weak current,
the P decay of the free neutron, n pe v„ is deter-
mined by momentum-independent vector and axial-
vector weak-coupling constants g~ and gA. The
neutron-spin-electron-momentum angular correlation is
sensitive to g~/gt, a recent experiment at the reactor of
Institut Laue-Langevin in Grenoble obtains g~/gv
=1.262(5). ' For q =0 the weak current couples only
to those nucleon constituents which build up the spin of
the nucleon; the strength of this coupling is g~/gt . In
confining potentials which follow a simple power law (in-
cluding the MIT bag inodel for an infinite power), g~/gt
is independent of the scale parameter set by the (phe-
nomenological) potential. In such models g~/gt depends
only on the surface thickness and decreases monotonical-
ly with decreasing surface thickness. The nucleon
axial-vector-to-vector charge ratio g~/gv is therefore of
fundamental importance to both weak- and strong-
interaction properties; moreover, the Goldberger-
Treiman relation links gq/gt to the pion-nucleon interac-
tion and the Bjorken sum rule links gz/gi to deep-
inelastic scattering of polarized electrons or muons oA'

polarized protons. ' It is therefore essential to under-
stand the experimental value for gz/gv in quark models.
Although the nonrelativistic quark model [within the
SU(6) scheme of hadrons] predicts the ratio of proton to
neutron magnetic moments to be p~/p„= —3/2, very
close to the experimental value —1.46, the same model
has problems with g~/gi, which it predicts to be 5/3 in-
stead of the observed —5/4. ' The latter fact then
creates well-known problems in pion-nucleon physics and
in deep-elastic scattering.

To find the origin of this discrepancy, without leaving
the SU(6) scheme of hadrons, the following relation
proves useful (note that this holds for any Dirac-scalar
confining potential, including M IT-bag-model wave
functions):

gA 5 2E0 quark

g,
with E0 the 1s]/2 quark eigenenergy and M the nucleon

mass. The nonrelativistic limit is p~q"""=3p~ (ptv the
nuclear magneton) and g~/gt =5/3 because Ep=(coll-
stituent quark mass) =M/3. In relativistic models
which confine quarks inside the nucleon, the pion field is
essential to continue the axial-vector current outside the
hadron surface. This pion field, however, contributes to

p~ and gz/gt in a fundamentally diA'erent way: In mod-
els where the pion (or any bosonic field) does not con-
tribute to the spin of the nucleon there is no contribution
of the pion field to g~/gv, in all models, however, the
meson fields contribute to the magnetic moment p~.
From Eq. (1) it is clear that the discrepancy observed in

static SU(6) vanishes once the pion field couples to the
electromagnetic current: For gz/gv =5/4 Eq. (1) yields
pt",

"""= —,
' (M/2Eo)ujv = —,

'
ptv [if one assumes —30%

center-of-mass corrections for the three-quark system,
and thus M = 2Eo rather than 3Ep (Refs. 8 and 9)]. In
order to reproduce the experimental p~ =2.793p~ one
needs pionic contributions of the order p~~""= 1p~. This
is consistent with independent findings in chiral bag mod-
els' as well as in quark potential models. '

Now we turn to the calculation of g~/gv in models
where only the quarks and not the mesons contribute to
the spin of the nucleon. The derivation of g~/gt is stan-
dard, "

JJ„& f'( )gA 5 4
1 ——

dp g 2 p + 2
p

where f (g) is the lower (upper) component of the quark
spinor (ls ii2 orbits)

iir(r, t) =e tg(r)/r

4tr ~ rf(r)/r
For confining potentials M(~ r

~
) = —,

' (I+ayo)c„r" (i.e.,
we assume that the current quark mass of 5-10 MeV"
can be neglected compared to the quark eigenenergy of—500 MeV ), it is obvious from the structure of Eq. (2)
that (g~/gt )(n;a) is independent of the scale c„. For
the special case a=1 there is an analytic expression for
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ga/gv,

(g~/g v ) (n;a = 1 ) = —,
' (n +3 )/(n + 1 ), (3)

which is the same for quarks in Is~/2, 2s~/2, etc. (i.e., in-
dependent of the principal quantum number of quarks).
Figure 1 shows g~/gv as a function of n for three values
a= —1,0, +1. For a~ ee (i.e., a pure vector confining
potential) g~/gv vanishes. Indeed for arbitrary vector
potentials g~/gv =0 (Ref. 3) as a consequence of the
Klein paradox. '

For a =0 and any other value (except for a = + l, ee)
there are no known analytic solutions for gg/gv. The
scale invariance of g~/gv, however, can be used to check
the reliability of the numerical methods involved.

The scalar-vector harmonic confinement potential
(i.e., a =+1, n =2) yields a complete orthonormal set of
Dirac eigenfunctions. In this case the Dirac equation
reduces to a simple second-order equation for the upper
component. The analytic solutions are given in Ref. 8;
they are characterized by a state-dependent scale param-
eter, unlike the situation known from the nonrelativistic
harmonic oscillator. Equation (3) suggests that there
might also be analytic solutions for n&2.

The n dependence of (g~/gv)(n;a) as shown in Fig. 1

reveals that the MIT bag is just the limit (as n~ ee) of
a scalar confining potential M(r) =c„r" with respect to

g~/gv This comes as no surprise since it is well known

that (gg/gv)M~T is independent of the bag radius (which

sets the relevant scale). Figure 1 shows that all classes
of confining models (except the vector potentials) give

the static SU(6) value —,
' for n 0, as expected [see

Eqs. (2) and (3)1. For large n the four classes

(a = —1,0, + 1,ee) converge to different asymptotic
values, 3, 1.0883, 9, and 0.0, respectively. For a given

surface thickness (measured by n ') the admixture of a
like- (unlike-) sign vector confining potential decreases
(increases) g~/gv. Only the quadratic potential repro-

duces the experimental g~/gv without any vector
confinement.

Before we discuss the a dependence of (g~/gv)(n;a) it
seems appropriate to comment on the eAect that a non-

vanishing current quark mass would have on these

findings. A nonzero mass term m~ in the Dirac equation
introduces another scale (besides c„), so that g~/gv de-

pends on c„ for m~~0. In fact, g~/gv is increased by
—M~/M (—a few percent for m~ =5-10 MeV ")
which trend is obvious from Eq. (2): Any deviation from

the static value 3 is of relativistic origin; a nonzero mass

m~ therefore decreases the lower component f compared
to the upper component g. I mention that for quark-core
radii between 0.5 and 1 fm the dependence of gg/gv on

c„due to m~ =10 MeV is very weak.
The a dependence of (g~/g )v(n; )afor n=0, 1,2, 3,4,

10,~ is shown in Fig. 2. %'e find an a-dependent rela-
tion generalizing Eq. (1),

gw 5 1

gv 3 1+2a
Eo quark

pp

so that p~q"'""=(M/2Eo)p~ for a = —
2 . For a~ —1

the quark eigenenergy Eo approaches zero and the
quark-core radius becomes infinite; this hoMs for any
n ~ 0. Beyond this point (a ~ —1) the quarks are
deconfined. Therefore, we identify two regions in a
space: confinement for a & —1.0 and deconfinement for
a & —1.0. From Fig. 2 we read off that a linear

confining potential can reproduce the experimental

g~/gv if a =+0.42. Similarly n =3, a = —0.11 is an ac-
ceptable solution, etc. ; the MIT bag model would need

a = —0.30 to reproduce the data (see Fig. 2).
Is there any evidence for a Dirac-vector part in the

confining potential'? Nonrelativistic models cannot dis-

tinguish between scalar and vector confinement. There-
fore, evidence must be sought under conditions where

relativistic effects show up. If the origin of the Dirac-
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FIG. 1. g~/gv as a function of n =r(d/dr)inM(r) for po-

tentials —, (I+ayo)M(r), M(r) =c,r, in the Dirac equation.

The shaded area is the experimental value (Ref. 1). A pure

vector confinement gives g~/gv=O (see text). The dashed line

corresponds to the MIT-bag-model value for mq =0.
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FIG. 2. gg/gv as a function of a; otherwise as in Fig. 1.
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vector confinement is even under the C transformation
(such as the vacuum state) then the vector-type potential
will appear to the antiquarks with the opposite sign as
compared to the quarks, thereby giving a different radius
to the antinucleon. The CPT theorem' requires that
particles and antiparticles have the same mass and oppo-
site charges. The CPT theorem, however, does allow for
a different size of nucleon and antinucleon [if the 3q
(3q) system cannot be described by a local field theory].
The presence of an additional Dirac-vector confining po-
tential inside the nucleon would also imply different
weak decay properties (i.e., g~/gy & for the antineutron.

In order to find experimental evidence for a vector
part in the quark confinement of nucleons one could
scatter "ultracold" antiprotons [currently being devel-
oped at the low-energy antiproton ring (LEAR) facility
at CERN ' ] off atomic electrons; very much as
thermal-neutron-on-atomic-electron scattering has been
used to accurately measure the charge form factor of the
neutron close to —

q =0. ' Even a very small momen-
tum transfer would suSce to determine the derivative of
the antiproton charge form factor at q =0 which is pro-
portional to (r~).

With present day technologies (Penning-trap experi-
ments at LEAR ' ) it should soon be possible to measure
the weak decay of the antineutron. If the nucleon is
bound in a nucleus, the many-body forces could induce a
Dirac-vector component into the individual nucleon's
internal quark-confinement potential. Polarization mea-
surements on nuclei are sensitive to relativistic eA'ects
and could signal possible Dirac-vector components.

Summarizing, I have shown that the weak axial-
vector-to-vector coupling g~/gv is suitable to point out
certain general features of bag-type models; these
features should be kept in mind when trying to improve
on hadron phenomenology. The ratio g~/g~ is scale in-
variant and measures the internal spin structure of the
nucleon; therefore, g~/gy is sensitive to the surface

thickness and decreases with decreasing thickness.
Moreover, g~/gy is a decreasing function of the Dirac-
vector component in the quark confinement. This has
implications for quark models to be used in nuclear phys-
1cs.
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