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Valence-Bond and Spin-Peierls Ground States of Low-Dimensional Quantum Antiferromagnets
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The large-N limit of a nearest-neighbor SU(N) antiferromagnet on a bipartite lattice exhibits in di-
mensions d~ 2 a zero-temperature phase transition between a Neel-ordered state and a resonanting-
valence-bond state. Here it is shown in d=1,2 that topological eAects produce spin-Peierls or valence-
bond-solid order in the non-Neel phase with a ground-state degeneracy which varies periodically with
"spin" for fixed N, with periodicity given by the coordination number of the lattice. Thus a non-Neel
phase of the spin- 2 Heisenberg model on a square lattice would be a spin-Peierls state with a fourfold
degeneracy due to broken lattice rotational symmetry.

PACS numbers: 75.10.3m, 74.65.+n, 75.50.Ee

Following the discovery of high-temperature supercon-
ductivity, ' it has been proposed that the phenomenon is

linked to a T =0 disordered (i.e. , non-Neel) phase of the
Heisenberg antiferromagnet on a square lattice. We
examine here nearest-neighbor generalizations of the
standard Heisenberg model on bipartite lattices in di-

mensions d =1,2 all of which have a two-sublattice Neel
state as their classical ground state. We find that topo
logical effects radically infl uence the nature of the
disordered phase, producing in general a spin-Peierls or
valence-bond-solid state. The degeneracy of this state
varies periodically with the magnitude of the "spin" at
each lattice site in accordance with the recent prediction
of Haldane and its generalization to SU(N). In d =2,
the elementary spin excitations are confined (i.e., per-
manently bound) pairs of "spinons" and there is a spin-

less collective mode with an energy gap at all wave vec-
tos. Our results for the phase diagram and ground
states are summarized in Figs. 1 and 2.

We study a family of models with Hamiltonian

H =—g s.'(t)s, (j), (1)~ &i,j)

where SB(i) are the generators of SU(N), (i,j) denotes
pairs of nearest neighbors ("links" ) on a d-dimensional
hypercubic lattice, and repeated indices a,P=1, . . . , N
are summed over. We will use a Schwinger boson repre-
sentation of the spin states, in which SP(i) =b, (i)bp(i),
i E A sublattice, and SB(j)= —bp (j)b,(j),j C B sub-
lattice; the b bosons are implied by the placement of in-
dices to transform as the conjugate representation to b,
which are in the fundamental representation of SU(N).
If we impose the constraint b,~b'=n, or b' b =n, at
each site, then the states are in an irreducible representa-
tion of SU(N) which has a Young tableau with one row
of n, boxes (the totally symmetric representation) on
sublattice A, and the conjugate of this on sublattice 8
(N —1 rows, n, columns). In the familiar case of N=2
[SU(2) or O(3) Heisenberg model], these are the usual
Schwinger bosons, and all sites have spin S =n, /2 This.
representation has been used previously by Arovas and
Auerbach to obtain a 1/N expansion with n, cL N in or-
der to study mainly the Neel-ordered phase.

We may represent the partition function of our models

!
by an imaginary-time functional integral of

r

b (i) +i7 (i) b (i) —ik(i)n, + g b' (j) +i7 (j) b, (j)—i7 (j)n,
iEA jcB

+ Z —Ig, , +„-I'—g,*,+„-b (t)b.(t+i)+H.c.J rl T/

over the fields b, b, Q, and k. Here the X(i) fix the boson number at each site, r dependence of all fields is implicit, Q
was introduced by a Hubbard-Stratonvich decoupling of 8, and j runs over nearest-neighbor vectors and has length a.
The Lagrangian X possesses a U(1) gauge invariance under arbitrary r-dependent changes of phase of b, b, provided

corresponding changes in Q, A, are made; the functional integral over X faithfully represents the partition function as

long as we fix a gauge, e.g. , by the condition dk/dr =0 at all sites.
The 1/N expansion of the free energy can be obtained by integrating out of X the N-component b, b fields to leave an

effective action for Q, k having coefficient N (since n, cx: N); minimizing with respect to the "mean-field" values of Q, k

gives the N ~ limit. This is equivalent to solving the mean-field Hamiltonian

HMF= g [N I Q I /J —Qb'(i)b, (i+j)+H.c.]+X g [bJ(i)b'(i) —n, ]+X g [b' (i)b, (i) —n, ].
i G A, j jEB

In writing HMF we used the fact that ik(i) =X and Q, , +„- are found to be uniform and independent of ti at the saddle
point. The constant k is found to be real and Q can be taken real, positive by a gauge transformation. The Hamiltoni-
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FIG. 1. Phase diagram of the square-lattice SU(N) antifer-
romagnet as a function of the spin n, [=2S for SU(2)]. The
phase boundary between Neel order and its absence behaves as
n, /N 0.19 as lV ~ (Ref. 6). Earlier work examined the
semiclassical (Refs. 3 and 4) and the fermionic large-1V limits
(Refs. 4, 6, and 7); the latter has spin-Peierls order with the
symmetry of Fig. 2(d) for all n, . This paper examines the bo-
sonic large-N region in the disordered phase close to the transi-
tion line. In d=1, the Neel region is absent, while for d & 2, a
similar phase boundary is found (Ref. 4).

I 0) eeexp gfkbk b —k
, k

(2)

which represents a condensate of singlet pairs of bosons
("valence bonds"); the bonds have ends on opposite sub-
lattices and their characteristic size is c/A. When pro-
jected onto n, bosons per site, I 0) is an SU(N) generali-
zation of the short-range resonating-valence-bond states
of Sutherland ' and Liang, Doucot, and Anderson, '

which are thus exact in the present large-N limit provid-
ed the distribution of bond lengths is chosen correctly.
The eigenmodes of HMp are clearly bosons in agreement
with recent calculations. ' '

We now consider the fate of the U(1) gauge invari-
ance of X in the mean-field theory of the disordered
state. It is useful to examine first global (site and z in-

an HMq can be diagonalized by Bogoluibov's method and

we find two modes for each wave vector in the (reduced)
Brillouin zone, of energy nik =(X —4d Q )k), where

-Z 2
—

2 Z]i2

yk =(1/2d) g„-e'" " and X —Q —J. At
nik=A=(k —4d Q ) 'i ~ 0 is the energy gap. In

d =1, 4 0 as n, /N ~; in d =2, 6 0 as tempera-
ture T 0 for all n, /N ) 0.19, and for n, /N
(0.19, the gap 6 remains nonzero at T=O. For d & 2,
6 vanishes above some critical value of n, /N for all

T & TN, ,I(n, /N), the Neei-ordering temperature. Cases
where 5 =0 require (b), (b) to be nonzero due to conden-

sation into the zero-energy states, which is identified

physically as long-range Neel order. In this paper, we

shall be interested in the disordered state at T=O and

d=1, 2 (n, /N &0.19 for d=2) where SU(N) symmetry
is unbroken.

When 3,« J, the long-wavelength b, b excitations have
a relativistic spectrum with speed of "light" (spin-wave
velocity) c—Xa/d 'i and mass d, /c . The ground state of
HMp has the form for d & 0

n, = 1,3 (mod 4) n, = 2 (mod 4) n, =0(mod 4)
(d) (e) (f)

FIG. 2. Symmetry of the ground states: Solid lines denote
larger values of (S(i).S(i+1)) for a link; no line, smaller
values; and dashed line, intermediate values. (a), (b) d = 1

chain. (c) Definition of the four plaquette sublattices W, A',

Y,Z and the electric fields on the links. (d)-(f) Symmetry of
ground states for square lattice near phase boundary in Fig. I,
of degeneracy 4,2, 1, respectively.

dependent) transformations; since our system has two
sites per unit cell, there are two such invariances: (i)
uniform, b e'~b, b e'~b; and (ii) staggered, b e'&b,

b e '~b. Clearly the "uniform" symmetry is broken
by the nonzero value of Q —(b'b, ) while the "staggered"
symmetry is not. Considering the full group of local
gauge transformations we see that it splits into two parts:
the uniform part which is broken, and the staggered part
which is not. Fluctuations of Q and X can be written in
the form (for each unit cell labeled by i E A )

Q;;+„-= [Q+q-(i+ —,
' i7)]exp[i0„-(i+ —,

' t7)],
t~(t) =A+i&I(i), tA(i+x) =),, +i).2(t+g),

and in momentum space,

aA„-(k) = —,
' [0„-(k)—0 „-(k)]= —aA „-(k),

M„-(k) =
2 [0„-(k)+0 „-(k)]=M „-(k),

A, (k) = —,
'

[X (k) —k (k)],
M, (k) = —,

'
[X (k)+X (k)] .

With g in a positive axis direction, the A„-,A, are the
components (A,A, ) of the gauge field for the unbroken,
staggered U(1) symmetry, while the M's are related to
the broken uniform symmetry. Note that the two modes
of HMI= at each point k in the Brillouin zone have
charges + 1 with respect to the staggered symmetry; i.e.,
they are particle and antiparticle.

We now give the form of the long-wavelength (»a)
eff'ective action of H in terms of the continuum fields q„-,
A, M, z'=(b'+b' )/2, n'=(b' —b' )/2, obtained after
integrating out x:

r
1
—d Q25 ff d"r dz '

I (8„—iA„)z'
I

+
2 I

z'
I

+ F&.+iNy Z (q„- q —-)F
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I
&(r =P)) ~exp gfk 2 I/oN, bk b k- —

, k
(3)

The gauge-invariant Berry phase is now just the change
in the phase of the wave function, which for large N is

plus additional terms involving M and q„-. Here r =c~,
A;=A, /c, and F„„=B„A,—B,A„, where p, v run over
x,y, . . . , i, is the electromagnetic field. The terms in-
volving z come from L while the remaining terms come
from integrating out b, b (or z) at one-loop order, giving
the coefficient N. For d (3, e —(6/c) can be cal-
culated in the continuum limit, but y (needed for the
spin-Peierls calculation below) has to be calculated using
the underlying lattice regularization, giving y —a' /X.
The z, A part of 5,& has just the form that would be ex-
pected by first passing to the continuum semiclassical
limit of the Neel phase of H (Ref. 12) and then taking
the large-N limit of the resulting CP ' model. '

So far 5,& contains only terms for small Auctuations,
but no terms relating to topologically nontrivial gauge-
field configurations. These terms, which are expected to
be Berry phase factors in the functional integral, would
be obtainable by integrating out b, b in the presence of a
nontrivial background gauge field. This should be
equivalent to our procedure below of calculating the
phase due to adiabatic evolution of the ground state (2)
in such a background. We discuss d =1,2 in turn:

(i) d =I.—The only relevant term which could be add-
ed to S,tr is (ie/2tr) fdxdrF„;, as suggested by semi-
classical calculations' in the Neel-ordered phase which
produce just this term, when written in CP
language, ' with e =an, . This term survives destruction
of Neel order and can be derived directly in the disor-
dered phase as follows. Consider a spin chain with N,
sites (N, even) and periodic boundary conditions.
Choosing the configuration in the phase of Q, 0„-(i
+ 2 it, r) =sgn(tj)p(r), where p(r) increases slowly
from 0 at r =0 to the gauge equivalent value 2trl/N, at
r=P (l integer), yields fdxdrF„=2trl. At r=0 -we

have the wave function
~
0) in Eq. (2) with fk real and

the sum is over k =2trn/aN„n =1, . . . , N, /2. For r ) 0
we find (0

~
d/dr

~
t1) =0; as a result

P„~ A(r=P)) =(—1)"'P„~A(r=0)), where P„pro-
jects onto n, bosons per site. This phase may be included
in S,tr by using e=ptr, where ( —1) =(—1)"'. Each
choice of 6 corresponds to a diA'erent metastable state of
the spin chain with a mean static electric field' i'F;
=e p/N, energy per site —ce p a/N, and a spin-Peierls
order parameter

(S(i) S(i+1)—S(i).S(i —1))-Ng&q.- —
q „-)/J

—ye cp.2

The ground state for n, even is therefore obtained with
the choice p =0 and is nondegenerate; the linear
Coulomb force confines the spinons in pairs. For n, odd
the ground state corresponds to p = +' 1, and is twofold
degenerate with a nonzero spin-Peierls order parameter;
the spinons are domain walls interpolating between the
two ground states. A schematic of the two ground states
is shown in Figs. 2(a) and 2(b). The spin-Peierls order
for n, odd was anticipated by Aleck' though not shown
directly for n, —N. This picture is now expected to be
correct for all N) 2. '

(ii) d=2.—In the Neel-ordered state of the CP
model, the Berry-phase term vanishes for any spin
configuration which is smooth on the scale of the lattice
spacing, ' but is nonzero for space-time "hedgehog"
singularities. In the disordered phase, we use the cor-
respondence between the electromagnetic field tensor F„,
and the "topological charge" i (B„z,*8,z' —rl,z,*tl„z') of
the CP ' model' to identify pointlike instanton con-
figurations of the (2+ 1)-dimensional compact U(1)
gauge theory' ' which have fF„,dS„„=2trm (the in-
tegral is over a sphere surrounding the singular point and
m is an integer) as the remnants of the hedgehog of the
Neel phase. The Berry phase of the instantons can be
calculated in a manner very similar to that employed for
d =1: We obtain a result (specified below) identical to
the hedgehog Berry phase calculated by Haldane and
its extension to SU(N). "

The subsequent analysis follows closely Polyakov's
solution ' of (2+ 1)-dimensional compact QED. Ne-
glecting all fields except 2 at distances ) c/6, the action
is evaluated for each instanton configuration, to give the
partition function

exp[ —S ([m,])],
(4)

S ([m,])=
2g, &

+g NE, m, +i g, m,2e' s~~ [(R, —R, )'+(r, —r, )'] 't' s

Note the following: (i) The instantons are represented by integer charges m, located at R„ the centers of the pla-
quettes. (ii) p is a dimensionless constant of order unity. (iii) The 1/r interaction between instantons is valid at dis-
tances larger than the spin-correlation length c/6 in contrast to the linear r interaction between hedgehogs on the or-
dered side. (iv) NE„ the instanton core-action, is determined by the physics at length scales shorter than c/6; assuming
that the instanton is better described as a hedgehog at these length scales, we expect E,—X/d, . (v) The term propor-
tional to g, is the Berry phase of the instanton; we have g, =0, 1,2, 3 for R, on sublattices O', X, Y,Z [Fig. 2(c)]. The
well-known equivalence between the d-dimensional Coulomb gas and the sine-Gordon model' can now be used to show
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that the long-distance properties of Z are equivalent to those of Z =fDgexp( —S,o) with

a CP

S,o= dr. g (g, —gt) +g ja (r);g, ) —M cos[g, —(n, rr/2)g, ]j, .
(s, t) s

H ere g is the sine-Gordon field whch was coupled to the
instanton charge with the term exp(ig, m, ), g =e /4Nrr,
and M =(2/gpa)exp( —NE, ) is the exponentially small
instanton fugacity. In the transformation from Eq. (4)
to Eq. (5) we have made the small-fugacity approxima-
tion of neglecting instantons with t m, t

~ 2.
If n, =0(mod4), S,G is the usual sine-Gordon model.

For small M, it is solved by expanding perturbatively
around a minimum. ' This gives a "screening length" in
the instanton plasma —aM ' and confinement of z
quanta (spinons) into pairs of size —aM . The fiuc-
tuations in F give a collective mode of gap —cM/a. This
closely resembles the properties of the valence-bond-solid
states recently introduced for n, =2S =4 in an SU(2)
model, ' and gives the full lattice symmetry [Fig. 2(f)].

For n, ~0(m od4) the uniform state 2, =const is un
stable. The rotation symmetry between the four sublat-
tices O', A, V, Z is therefore spontaneously broken. For
n, = I (mod4) one stable minimum of S,G is given to or-
der M by gw=gx= —rr/4 M /4J» Zv=Zz= &/4

+M /442 (there are three other similar minima near
rr/4, 3rr/4, and —3x/4). This minimum has a static elec-
tric field [Fig. 2(c)]: iE3=iE4=0, iE~ =iEz=rrgM /
J2a. The coupling between the electric field and the q„-

field in S,s now implies an exponentially small (in N)
but nonzero spin-Peierls order of the type shown in Fig.
2(d) with (q; —

q „-)—(yea)rrgcM /J2. A very similar
analysis can be performed for n, =3(mod4). For n,
=2(mod4) the minima of S,G lead to the static electric
fields iE2=iE3= —iE4=gM /4a and spin-Peierls order
of the type shown in Fig. 2(e). ' These states with bro-
ken lattice symmetry also give confinement of spinons
and a massive spinless collective mode but with gap (in-
verse confinement scale) —cM /a and cM /a for n, =2
and 1,3(mod4), respectively. This completes our results.

A similar calculation can be carried out for other bi-
partite lattices, in particular the honeycomb lattice in

d =2. This has coordination number 3 and the periodici-
ty in ground-state properties is then in n, (mod3), which
is consistent with Ref. 18. Our results also generalize to
models where sublattice A has m rows in its Young ta-
bleau, requireing that the bosons have U(m) gauge sym-
metry. The only modification to our results is that in

d =1 there are no soliton excitations connecting the
ground states for n, odd.
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