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Valence-Bond and Spin-Peierls Ground States of Low-Dimensional Quantum Antiferromagnets
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The large-N limit of a nearest-neighbor SU(NV) antiferromagnet on a bipartite lattice exhibits in di-
mensions d = 2 a zero-temperature phase transition between a Néel-ordered state and a resonanting-
valence-bond state. Here it is shown in d =1,2 that topological effects produce spin-Peierls or valence-
bond-solid order in the non-Néel phase with a ground-state degeneracy which varies periodically with
“spin” for fixed /V, with periodicity given by the coordination number of the lattice. Thus a non-Néel
phase of the spin-3 Heisenberg model on a square lattice would be a spin-Peierls state with a fourfold
degeneracy due to broken lattice rotational symmetry.

PACS numbers: 75.10.Jm, 74.65.+n, 75.50.Ee

Following the discovery of high-temperature supercon- where S2(i) are the generators of SU(IV), {i,j) denotes
ductivity,' it has been proposed that the phenomenon is pairs of nearest neighbors (“links”) on a d—dimensional
linked to a T =0 disordered (i.e., non-Néel) phase of the hypercubic lattice, and repeated indices a,8= ..,N
Heisenberg antiferromagnet on a square lattice.”> We are summed over. We will use a Schwinger boson repre-
examine here nearest-neighbor generalizations of the sentation of the spin states, in which S2() =b.()b(),
standard Heisenberg model on bipartite lattices in di- i € A sublattice, and S2(j) = — 5" (j)b,(j), j € B sub-
mensions d =1,2 all of which have a two-sublattice Néel lattice; the b bosons are implied by the placement of in-
state as their classical ground state. We find that topo- dices to transform as the conjugate representation to b,
logical effects radically influence the nature of the which are in the fundamental representation of SU(N).
disordered phase, producing in general a spin-Peierls or If we impose the constraint bJb*=n, or b*'b,=n, at
valence-bond-solid state. The degeneracy of this state each site, then the states are in an irreducible representa-
varies periodically with the magnitude of the “spin” at tion of SU(N) which has a Young tableau with one row
each lattice site in accordance with the recent prediction of n. boxes (the totally symmetric representation) on
of Haldane® and its generalization to SU(N).* In d =2, sublattice 4, and the conjugate of this on sublattice B
the elementary spin excitations are confined (i.e., per- (V—1 rows, n. columns). In the familiar case of N =2
manently bound) pairs of “spinons” and there is a spin- [SU(2) or O(3) Heisenberg modell, these are the usual
less collective mode with an energy gap at all wave vec- Schwinger bosons, and all sites have spin S =n./2. This
tos.”> Our results for the phase diagram and ground representation has been used previously by Arovas and
states are summarized in Figs. 1 and 2. Auerbach® to obtain a 1/NV expansion with n, & N in or-

We study a family of models with Hamiltonian der to study mainly the Néel-ordered phase.

A A We may represent the partition function of our models
H =N (%;)SE(:‘)S;} ¥ M | by an imaginary-time functional integral® of
=3 [b;(i) L) |2~ |+ X [5’1*(;) L 2() B —ik(j)ncl
i€a dt jE€B dt

+ X N|Q1,+,,|2 0% 4+5b°(Dba(i+17)+H.c.

i€ AN

over the fields b, b, Q, and L. Here the A (i) fix the boson number at each site, = dependence of all fields is implicit, Q
was introduced by a Hubbard-Stratonvich decoupling of H, and 7 runs over nearest-neighbor vectors and has length a.
The Lagrangian .L possesses a U(1) gauge invariance under arbitrary r-dependent changes of phase of b, b, provided
corresponding changes in Q,A are made; the functional integral over £ faithfully represents the partition function as
long as we fix a gauge, e.g., by the condition dA/dz =0 at all sites.

The 1/N expansion of the free energy can be obtained by integrating out of .£ the N-component b, b fields to leave an
effective action for Q,A having coefficient NV (since n. &« N); minimizing with respect to the “mean-field” values of Q,A
gives the N— oo limit.® This is equivalent to solving the mean-field Hamiltonian

=Y IN|QIHJ—0b(D)b(i+7)+H.c.]+A Z bd DbeG) —nd+x Y 1B ()b,G) —n.].

i€ AN JEB

In writing Hwr we used the fact that iL(i) =X and Q,, ; are found to be uniform and independent of 7 at the saddle
point. The constant A is found to be real and Q can be taken real, positive by a gauge transformation. The Hamiltoni-
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FIG. 1. Phase diagram of the square-lattice SU(/V) antifer-
romagnet as a function of the spin n. [ =2 for SU(2)]. The
phase boundary between Néel order and its absence behaves as
ne/N-—0.19 as N— oo (Ref. 6). Earlier work examined the
semiclassical (Refs. 3 and 4) and the fermionic large-/N limits
(Refs. 4, 6, and 7); the latter has spin-Peierls order with the
symmetry of Fig. 2(d) for all n.. This paper examines the bo-
sonic large-/V region in the disordered phase close to the transi-
tion line. In d =1, the Néel region is absent, while for d > 2, a
similar phase boundary is found (Ref. 4).

an H v can be diagonalized by Bogoluibov’s method and
we find two modes for each wave vector in the (reduced)
Brillouin zone, of energy wk=(7_»2_—4d2Q2y§) 172 where
nwn=0/2d)X;e™" and i~Q ~J. At k=0,
wox=A=(’>—4d*0%)'*=0 is the energy gap. In
d=1, A— 0 as n./N— o; in d =2, A— 0 as tempera-
ture T—0 for all n.,/N=0.19, and for n/N
< 0.19, the gap A remains nonzero at T=0. For d > 2,
A vanishes above some critical value of n./N for all
T < Tneel(n./N), the Néel-ordering temperature. Cases
where A =0 require {(b),{b) to be nonzero due to conden-
sation into the zero-energy states, which is identified
physically as long-range Néel order.’ In this paper, we
shall be interested in the disordered state at T =0 and
d=1,2 (n./N <0.19 for d =2) where SU(N) symmetry
is unbroken.

When A< J, the long-wavelength b,b excitations have
a relativistic spectrum with speed of “light” (spin-wave
velocity) ¢ ~Xa/d ' and mass A/c2. The ground state of
H mr has the form for A>0

| @) cexp [%fkbﬁal?"_*k lo), @)
which represents a condensate of singlet pairs of bosons
(““valence bonds’’); the bonds have ends on opposite sub-
lattices and their characteristic size is ¢/A. When pro-
jected onto n. bosons per site, | @) is an SU(V) generali-
zation of the short-range resonating-valence-bond states
of Sutherland'® and Liang, Doucot, and Anderson,'°
which are thus exact in the present large-N limit provid-
ed the distribution of bond lengths is chosen correctly.
The eigenmodes of Hwyr are clearly bosons in agreement
with recent calculations. !

We now consider the fate of the U(1) gauge invari-
ance of .L in the mean-field theory of the disordered
state. It is useful to examine first global (site and 7 in-
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FIG. 2. Symmetry of the ground states: Solid lines denote
larger values of (S(i)-S(i+1)) for a link; no line, smaller
values; and dashed line, intermediate values. (a),(b) d=1
chain. (c) Definition of the four plaquette sublattices W, X,
Y,Z and the electric fields on the links. (d)-(f) Symmetry of
ground states for square lattice near phase boundary in Fig. 1,
of degeneracy 4,2,1, respectively.

dependent) transformations; since our system has two
sites per unit cell, there are two such invariances: (i)
uniform, b— e’b, b— e'*b; and (ii) staggered, b— e'b,
b— e ~b. Clearly the “uniform” symmetry is broken
by the nonzero value of Q ~(b°b,) while the “staggered”
symmetry is not. Considering the full group of local
gauge transformations we see that it splits into two parts:
the uniform part which is broken, and the staggered part
which is not. Fluctuations of Q and A can be written in
the form (for each unit cell labeled by i € 4)

Qii+i=l0+q;Gi+ 3 M ]lexplio i+ 5 7)1,

@) =+ (), nG+Z) =X+, G+5),
and in momentum space,

ad; (k) = +10,(k) —0_ ()] = —a4 _,(k),

M) =710, +6_;)]=M_;K),

A.(k) =37 () — 1)1,

M. (k) =7 (k) +2r0)].

With 7 in a positive axis direction, the Ajz,A, are the
components (A, A.) of the gauge field for the unbroken,
staggered U(1) symmetry, while the M’s are related to
the broken uniform symmetry. Note that the two modes
of Hmr at each point k in the Brillouin zone have
charges = 1 with respect to the staggered symmetry; i.e.,
they are particle and antiparticle.

We now give the form of the long-wavelength (>>a)
effective action of H in terms of the continuum fields 95
A, M, z°=b"+b")/2, n*=(b"—5"")/2, obtained after
integrating out x:

. i A?) L N .
{I(a,,—zA,,)z |2+?|z '2}+Z2—F"2"+INYZ (q,;—q_ﬁ)F,;;

5>0
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plus additional terms involving M and g;. Here 7=cr,
A;=A]/c, and F,,=9,4,—d,4,, where u,v run over
X,Y,...,1T, is the electromagnetic field. The terms in-
volving z come from .£ while the remaining terms come
from integrating out b,b (or z) at one-loop order, giving
the coefficient N. For d <3, e?~(A/c)?~? can be cal-
culated in the continuum limit, but y (needed for the
spin-Peierls calculation below) has to be calculated using
the underlying lattice regularization, giving y~a '~ “/A.
The z,A part of Sex has just the form that would be ex-
pected by first passing to the continuum semiclassical
limit of the Néel phase of H (Ref. 12) and then taking
the large-N limit of the resulting CP™ ™! model. '

So far S.x contains only terms for small fluctuations,
but no terms relating to topologically nontrivial gauge-
field configurations. These terms, which are expected to
be Berry phase factors in the functional integral, would
be obtainable by integrating out b,b in the presence of a
nontrivial background gauge field. This should be
equivalent to our procedure below of calculating the
phase due to adiabatic evolution of the ground state (2)
in such a background. We discuss d =1,2 in turn:

(i) d=1.—The only relevant term which could be add-
ed to Se is (i6/27r)fdxdr'Fx;, as suggested by semi-
classical calculations'? in the Néel-ordered phase which
produce just this term, when written in CP"~!
language,'® with © =zn.. This term survives destruction
of Néel order and can be derived directly in the disor-
dered phase as follows. Consider a spin chain with NV
sites (IV; even) and periodic boundary conditions.
Choosing the configuration in the phase of Q, 6,(i
+ 3 f,7) =sgn(7)¢(r), where ¢(z) increases slowly
from O at =0 to the gauge equivalent value 2x//N; at
=P (I integer), yields [dxdiF .=2nl. At 1=0 we
have the wave function | @) in Eq. (2) with f) real and
the sum is over k =2zn/aN;, n=1, ... ,Ns/2. For t>0
we find (Q | d/dz| Q) =0; as a result

| @(z=p)) xexp [gfk —2nt/an, BBk ] o). (3)

The gauge-invariant Berry phase is now just the change
in the phase of the wave function, which for large N is

> ‘:Z ]exp[—Sm({mS})] ,

Nz msnmy
S, (m}) ="
2¢? = (R, —R,) 2+ (5, —7,)2]'/2

P, laGz=p)=(—1 )"‘IP,,C | @(z=0)), where P, pro-
jects onto n, bosons per site. This phase may be included
in S.r by using ©=pr, where (—1)?=(—1)". Each
choice of © corresponds to a different metastable state of
the spin chain with a mean static electric field'® iF, .
=e2p/N, energy per site ~ce 2p2a/N, and a spin-Peierls
order parameter

(SG)-SG+1)—=8G)-SG—1)~NOlg; —q /T

~vyelep.

The ground state for n. even is therefore obtained with
the choice p=0 and is nondegenerate; the linear
Coulomb force confines the spinons in pairs. For n. odd
the ground state corresponds to p == 1, and is twofold
degenerate with a nonzero spin-Peierls order parameter;
the spinons are domain walls interpolating between the
two ground states. A schematic of the two ground states
is shown in Figs. 2(a) and 2(b). The spin-Peierls order
for n, odd was anticipated by Affleck ' though not shown
directly for n.~N. This picture is now expected to be
correct for all N > 2. 414

(ii) d=2.—1n the Néel-ordered state of the CP"V ™!
model, the Berry-phase term vanishes for any spin
configuration which is smooth on the scale of the lattice
spacing,'® but is nonzero for space-time “hedgehog”
singularities.® In the disordered phase, we use the cor-
respondence between the electromagnetic field tensor F,,
and the “topological charge” i(8,z;8,z° —9,z,9,2%) of
the CPV ™! model'? to identify pointlike instanton con-
figurations of the (2+1)-dimensional compact U(1)
gauge theory'®!” which have [ F,,dS,,=2zm (the in-
tegral is over a sphere surrounding the singular point and
m is an integer) as the remnants of the hedgehog of the
Néel phase. The Berry phase of the instantons can be
calculated in a manner very similar to that employed for
d=1: We obtain a result (specified below) identical to
the hedgehog Berry phase calculated by Haldane® and
its extension to SU(V).*

The subsequent analysis follows closely Polyakov’s
solution'® of (2+1)-dimensional compact QED. Ne-
glecting all fields except A at distances > c¢/A, the action
is evaluated for each instanton configuration, to give the
partition function

4

n
+3 [NECm52+i%§sms
s

Note the following: (i) The instantons are represented by integer charges m; located at R;, the centers of the pla-
quettes. (ii) p is a dimensionless constant of order unity. (iii) The 1/r interaction between instantons is valid at dis-
tances larger than the spin-correlation length ¢/A in contrast to the linear r interaction between hedgehogs on the or-
dered side. (iv) NVE., the instanton core-action, is determined by the physics at length scales shorter than ¢/A; assuming
that the instanton is better described as a hedgehog at these length scales, we expect E.~4/A. (v) The term propor-
tional to £ is the Berry phase of the instanton; we have £ =0,1,2,3 for R, on sublattices W,X,Y,Z [Fig. 2(c)]. The
well-known equivalence between the d-dimensional Coulomb gas and the sine-Gordon model '® can now be used to show
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that the long-distance properties of Z are equivalent to those of Z = [ Dyexp(—S,g) with

So=E [Taz] T G —x)+ 21020202 — Mcosly, — (nen/ &1 |
20 (s,0) s

Here y is the sine-Gordon field whch was coupled to the
instanton charge with the term exp(iy;m;), g =e¢2/AN7?,
and M *=(2/gpa)exp(— NE_.) is the exponentially small
instanton fugacity. In the transformation from Eq. (4)
to Eq. (5) we have made the small-fugacity approxima-
tion of neglecting instantons with |m, | = 2.

If n.=0(mod4), S is the usual sine-Gordon model.
For small M, it is solved by expanding perturbatively
around a minimum.'® This gives a “screening length” in
the instanton plasma ~aM ~! and confinement of z
quanta (spinons) into pairs of size ~aM ~!. The fluc-
tuations in F give a collective mode of gap ~cM/a. This
closely resembles the properties of the valence-bond-solid
states recently introduced for n. =2S =4 in an SU(2)
model, '8 and gives the full lattice symmetry [Fig. 2(f)].

For n.=0(mod4) the uniform state y, =const is un-
stable. The rotation symmetry between the four sublat-
tices W,X,Y,Z is therefore spontaneously broken. For
n. =1(mod4) one stable minimum of S is given to or-
der M2 by yw=xx=—n/A—M?*42, yy=yxz=—rn/4
+ M ?/4/2 (there are three other similar minima near
n/4, 3n/4, and — 3x/4). This minimum has a static elec-
tric field [Fig. 2(c)l: iE3=iE4=0, iE,=iE,=ngM?/
V2a. The coupling between the electric field and the g,
field in S.x now implies an exponentially small (in N)
but nonzero spin-Peierls order of the type shown in Fig.
2(d) with {g; —q _;)~(yAa)rgeM*//2. A very similar
analysis can be performed for n.=3(mod4). For n,
=2(mod4) the minima of S, lead to the static electric
fields iE,=iE;= —iE4=gM?*/4a and spin-Peierls order
of the type shown in Fig. 2(e).'® These states with bro-
ken lattice symmetry also give confinement of spinons
and a massive spinless collective mode but with gap (in-
verse confinement scale) ~cM %/a and cM*/a for n. =2
and 1,3(mod4), respectively. This completes our results.

A similar calculation can be carried out for other bi-
partite lattices, in particular the honeycomb lattice in
d =2. This has coordination number 3 and the periodici-
ty in ground-state properties is then in n.(mod3), which
is consistent with Ref. 18. Our results also generalize to
models where sublattice 4 has m rows in its Young ta-
bleau, requireing that the bosons have U(m) gauge sym-
metry.* The only modification to our results is that in
d=1 there are no soliton excitations connecting the
ground states for n. odd.
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