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Tunneling in the Presence of Phonons: A Solvable Model
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We obtain the solution for an electron tunneling through a thin potential barrier with local Einstein
phonons, by means of a continued-fraction expansion. Our results demonstrate the strong feedback be-
tween inelastic and elastic scattering, the associated singularities, an increase in low-energy transmission
with a nonmonotonic temperature dependence, and a crossover from quantum to adiabatic behavior with
increasing temperature and electron velocity.

PACS numbers: 73.40.Gk, 03.65.Nk, 73.50.Bk

Tunneling is one of the most fundamental quantum
processes' and tunneling devices are potentially of great
technological importance. One of the major issues in
this field is the efl'ect of phonons ("dissipation") and its
correct theoretical treatment. For example, in a
quantum-mechanical problem involving both elastic and
inelastic scattering channels, care has to be taken to en-
sure correct normalization of the particle wave function.
If the probability of finding the particle in the initial
state is unity then after interaction the sum over all pos-
sible final-state probabilities must also be unity. This
unitarity condition leads to a feedback mechanism by
which inelastic scattering processes change the probabili-
ty of elastic scattering. Clearly, this feedback mecha-
nism is beyond the scope of simple perturbation theory. '

Approximate and exact solutions for quantum-
mechanical transmission and reAection of particles in the
presence of dissipation have been presented in the past.
These studies, e.g. , considered two-state systems, WKB
approximations, resonant tunneling models, and a uni-
tary one-phonon approximation. In this paper a numer-
ical solution to the problem is outlined for the specific
case of an electron tunneling through a thin potential
barrier with local Einstein phonons. Using our model,
we extract the essential physics of real tunneling struc-
tures, in particular the feedback mechanism between
elastic and inelastic tunnel current.

Figure 1 represents an electron in the conduction band
of a crystal with initial kinetic energy E impinging on a
potential barrier of energy Vo and width 6. Confined
within the barrier are Einstein phonons of frequency co

to which the electron couples. The electron may be
inelastically scattered inside the barrier, and is either
transmitted or reflected emerging with an energy
E'=E+nco, where n is an integer.

We consider the one-dimensional tight-binding Hamil-
tonian (in the interaction representation) describing the
electron subject to the static barrier potential Vo; and a
deformation potential coupling Vl;(t) to the Einstein
phonons:

H;&(t) = —t;l. +8;~ [Vp;+ Vl;(t)] .

t;~ is the hopping amplitude and

Vl;(t) =V~8;p[bexp( —itpt)+btexp(idiot)],

y,'(t) =y,"(t)+g dt'G~j'(t —t') Vl, (t') y, (t'), (3a)
J

(3b)v,"(t)=g „dt'G;,'(t —t') vp, y,'(t'),
J

where Gpl (y,'p) is the retarded electron propagator

V=Vp

V 0 =2

V=O

FIG. 1. Schematic diagram of an electron of initial energy
E approaching a potential barrier of average energy Vo and
width 6. Inelastically scattered electrons can be transmitted or
reflected at the barrier and emerge with energy E'=E+nco,
where n is an integer and m is the phonon frequency.

where b and b are phonon creation and annihilation
operators, respectively. The phonons are assumed to be
localized at one of the interfaces of Vo; which, for con-
venience, is chosen to be the origin. Experimentally, the
localized phonons might correspond to vibrational modes
of organic molecules placed in the barrier of a tunneling
structure. Note that the solution y; of the time-
dependent Schrodinger equation is an amplitude opera-
tor, i.e., it is an amplitude for the electron and an opera-
tor for the phonons. To calculate observable properties
of the electron we will take a thermal average over the
phonon states.

After transforming the time-dependent Schrodinger
equation into a Lippman-Schwinger equation and divid-
ing y; into an incoming (y, ) and a scattered (y,') wave,
we find
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(scattered wave) for the static barrier Vp;. We consider an incoming plane wave with momentum p and energy E,

yj~(t) =exp(ipj a —iEt), (4)

where a is the lattice constant. To solve Eq. (3), we make an Ansatz for the scattered wave at the origin, decomposing
it into multiphonon components (see Fig. 1),

yp(t) = g (b ) "A„exp[—i(E —nto)t]+ g (b) "B„exp[—i(E+nto)t],
n=p n=l

where A„and B„are diagonal operators. Substituting Eq. (5) into Eq. (3a), we are left with the recurrence relations

(5)

A„=V~Gpp(E —nto)[6„~+A„~+(bb +n)A, +~], n~ 1,
B„=V~Gpp(E+nto) [8„&+B„~+(bb —n)B, +~l, n ~ 1,
Ap =Bp = yp exp(iEt) + V~Gpp(E) [bb A ~+b bB] .

(6a)

(6b)

(6c)

Equations of the form (6) have been studied in the past in the context of the dynamical coherent potential approxima-
tion for polarons. Given Gpp, (diagonal) matrix elements of A„and B„can be easily obtained numerically using a
continued-fraction expansion.

In the following, we shall consider tunneling through a thin potential barrier, i.e., Vp; = V06;p and

G~p(E) = [—e+sgn(e)(e —1) ' ] /[2t sgn(e)(e —1) ' —Vp], ~
e

~
& 1

=exP(iP I j I a)/[2«(1 —e') '"—Vp],

(7a)

(7b)

Here, nearest-neighbor hopping [t;~ =t8~ +~, E =. —2tcos(pa)] has been assumed and e=E/2t. However, our solution
can be easily extended to other barrier shapes and dispersion relations by calculating the appropriate Green s function.

The current operator is j =ita [yk+ ~ yk
—

yk yk+ &]. Using Eqs. (3), (4), (5), and (7), we obtain the thermally aver-
aged transmitted current

(j,)=2taZ ' g e ~"g' 1—
l=p n=0

E —neo

2t

2
- l/2 - l/2

+ (l+n)!
~n0+ (i/~„/i)

i 2 l/2

+2taZ ' g e
n=l

E+nm
2t

(8)

where Z= 1/[1 —exp( —Pro)] is the partition function and the primed sums over n are restricted to current carrying
states (positive arguments of the square roots). The expression for the reflected current (jz) is identical to Eq. (8) ex-
cept for the sign and the absence of the B„p source term, and

(jr) —(j R) =jp=2ta(1 —e ) 't .

The static-barrier transmission coefficient (jT)/jp is given by

Tp(E, Vp) = (1 —e')/[1 —e'+ Vp/(2t) '] . (1O)

In addition, we define an adiabatic transmission coefficient

T,, d(e) =(Tp(e, Vp+ V](b+b')))

1
f+ +OO

dQ exp
[2zcoth(Pro/2)] ' ' " Tp(e, Vp+ Vig),2coth Pro 2

which describes current flow in the limit of low phonon
frequencies, or high temperatures T =P ', in which the
phonon potential reduces to Gaussian white noise.

Figures 2(a)-2(c) show the static-barrier (broken
curve) and adiabatic (dotted curve) transmission
coefticients for various temperatures T. The adiabatic
transmission at low electron velocities is always en-
hanced [for e —1 we have T,d(e) cx: (e+ 1) ' and
Tp(e) & e+1], proportional to the probability of finding

a low potential barrier, i.e., a fluctuation g =(—Vp/V~)
[see Eq. (11)]. As a function of temperature, this results
in a maximum increase for (Vp/V~) =coth(Pro/2). The
behavior at high electron velocities depends on the values
of Vp and Vl, but at high temperatures the transmission
is always suppressed [Fig. 2(c)].

The solid curves in Figs. 2(a)-2(c) show the transmis-
sion coe%cient obtained from the numerical solution of

1684



VOLUME 62, NUMBER 14 PHYSICAL REVIEW LETTERS 3 APRIL 1989

0.8
T=O (0) — T=O (d)

0.1 0
T=O

0.4—

0.2—

0.0
UJ

C3 0.6—
U
U
iJJ

0.4—0

O
u) 0.2—
CO

z 0.0

0.6—

0.4—

(b) — T=co

+ ~ '~ ~ 0 ~ ~ ~ ~ coo
I I I I I

(e)

~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ IO ~ ~ ~ ~ Oy ~

I I I I I I I I I I I I I

(c) — T 10cu

I I I I I ] I I I I I I I I I

I-
UJ 008—
C3

U
U
UJ
O

0 06—
O
M
V)

~ o.o4—

CL

0
I- 0.02—
M

UJ

0.00
-2t -1.6t -1.2t

ENERGY

!

PHONON

-0.8 t -0.4t

Vp =1.6t,FIG. 3. Inelastic transmission coefficient for
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FIG. 2. Transmission coefficient for Vp=1.6t, Vi =0.7t, and
co=0.4t for various temperatures T. (a)-(c) show the static-
barrier (broken curve), adiabatic (dotted curve), and total
(solid curve) transmission; (d)-(f) show the static-barrier
(broken curve), elastic (solid curve), and inelastic (dotted
curve) transmissions.

Eqs. (6) and (8). The transmission coefficient exhibits
singularities (cusps or infinite slopes) at the threshold en-

ergies for phonon emission E = —2t+nco, n ~ 1, i.e.,
whenever a new scattering channel opens up. This in-

teresting threshold behavior is well known from atomic
and nuclear reactions' and is a consequence of unitari-
ty. With increasing electron velocity the lattice has no
time to respond and adiabatic behavior is recovered. The
same is true at high temperatures [Fig. 2(c)1, for which
the phonons can be treated classically.

Figures 2(d)-2(f) show the elastic (solid curves) and
inelastic (dotted curves) transmission coefficients for the
same parameters as in Figs. 2(a)-2(c) and in Fig. 3 the
decomposition of the inelastic transmission into its multi-
phonon components is shown for T=O. Figures 2(d)-
2(f) illustrate the complementary behavior of elastic and
inelastic transmissions, i.e., the former decreases when

the latter increases, and vice versa. This is again a mani-
festation of unitarity. At T=O, the inelastic transmis-
sion sets in at the threshold for one-phonon emission,
E = —2t + co. The elastic (zero phonon) transmission
decreases drastically at that point, because states with
lower velocity are mixed in [Fig. 2(d)]. At E= —2t
+2', two-phonon emission becomes possible and now
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FIG. 4. Change in transmission coefficient (relative to the
static-barrier case) for Vp =1.6t, Vl =0 4t, and to =0.2t, for.
T=0.

the one-phonon transmission decreases, again because of
the admixture of lower velocity states (Fig. 3). For the
particularly large value of the coupling used in the calcu-
lation, the total inelastic transmission actually decreases
(Fig. 3) and hence the elastic transmission is enhanced
[Fig. 2(d)]. Similar arguments explain the behavior
above the three-phonon threshold.

For temperatures T) 0, one-phonon absorption ini-

tially enhances the low-energy elastic transmission by
admixing higher velocity states [Fig. 2(e)], but ultimate-
ly it leads to its reduction because of unitarity [Fig.
2(f)]. This results in a nonmonotonic temperature
dependence of the low-energy elastic and total transmis-
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sion similar to that in the adiabatic case [Figs.
2(a)-2(c)].

Realistic tunneling structures usually have couplings
and phonon frequencies smaller than in Figs. 2 and 3, so
that the changes in transmission due to phonons can only
be seen on a diAerential scale. Typically, for T=O we
find a change in total transmission with infinite slope at
the one-phonon threshold and a small cusp at the two-
phonon threshold (Fig. 4). This translates, respectively,
into a peak and a dispersive signal in the second deriva-
tive of a typical tunnel junction's current-voltage charac-
teristic. Experimentally, one-phonon peaks are observed
and the measured two-phonon structure appears to have
just such a dispersive signature.

In summary, we have developed a nonperturbative for-
malism to describe electron transport across abrupt
changes in potential in the presence of inelastic scatter-
ing with local Einstein phonons. We have applied our
technique to the case of electron tunneling through a
thin potential barrier. Our numerical results demon-
strate (i) the existence of a feedback mechanism in
which inelastic scattering processes substantially inAu-
ence elastic tunnel current, (ii) associated singularities,
(iii) an increase in low-energy elastic and total transmis-
sion with a nonmonotonic temperature dependence, and
(iv) a crossover from quantum to adiabatic behavior
with increasing temperature and electron velocity. The

total transmitted current in a tunnel device depends in a
subtle, but understandable, way on the initial electron
energy, barrier energy, phonon frequency, interaction
strength, and device temperature. It remains to be seen
whether experiments can be devised that directly mea-
sure the feedback mechanism between elastic and inelas-
tic channels, as well as the associated singularities.
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