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We study the inhuence of conduction electrons on spectral and dynamical properties of the biased
two-level system using path-integral methods. The structure factor for inelastic neutron scattering is
calculated in the case of weak coupling (K« 1) and for a special value of the coupling strength (It. = —,

' ).
The eAect of interbounce interactions is systematically taken into account at low temperatures, thus re-
moving shortcomings of the dilute-bounce-gas approximation. The method and results are relevant also
for the "macroscopic quantum coherence" problem.

PACS numbers: 66.30.Dn, 05.40.+j, 61.12.—q

At very low temperatures the quantum dynamics of
light interstitials in metals are strongly influenced by the
nonadiabatic interaction with conduction electrons. '

Specifically, the anomalous increase with decreasing
temperature of the muon hopping rate in aluminum and

copper below 10 K has been attributed to nonadiabatic
screening effects. The important influence of conduc-
tion electrons on defect tunneling has been seen even
more clearly in neutron-spectroscopy experiments on hy-
drogen trapped by oxygen in niobium. The proton in
the Nb(OH) samples seems to constitute a two-level

system which is ideally suited for studying the influence
of dissipation on quantum dynamics. In this system the
dimensionless parameter K describing the coupling to the
normal-state conduction electrons is very small, namely,
near K=0.05. A theoretical analysis of the dissipative
two-state system based upon the path-integral method
has been presented by Leggett et al. , and the theoretical
aspects related to the fermionic effects have been sur-

veyed by Kondo. Most of the explicit results for the
system dynamics were derived within the so-called
dilute-bounce-gas approximation (DBGA) of the under-

lying functional-integral expression. For a symmetric
system the eA'ect of the interbounce interactions is of or-
der K, whereas the terms that are kept give nontrivial
effects of order K. Thus the DBGA is a systematic
weak-coupling approximation for a symmetric system
down to T=O. Previously, the DBGA was employed to
calculate the structure factor for a symmetric two-state
system coupled to a Fermi bath. The theoretical pre-
dictions were found to be in good agreement with recent
experiments on hydrogen trapped by oxygen in normal-
state niobium.

For asymmetric two-state systems the effect of the in-
terbounce interactions contributes to the order K at very
low temperatures. Thus the DBGA breaks down in the
presence of a bias, which shows up in a number of
shortcomings ' (see below).

In this Letter we present the corresponding systematic

treatment of the dynamics for K&(1. We also give the
exact solution for the special value K= 2. A major
motivation for this work is the recent observation of
significant energetic shifts between the two interstitial
sites of a given H atom in Nb due to static lattice strains
from surrounding defects. The shifts were shown to in-
crease with increasing defect concentration. In view of
current neutron-scattering experiments for such systems
our attention here is concentrated on the calculation of
the structure factor. The method is relevant also for re-
laxation phenomena in metallic glasses' and for the
"macroscopic quantum coherence" problem.

Let us consider the dynamics of a defect tunneling be-
tween two trap sites with a bias energy A. e between the
ground states in the two traps and with a tunnel matrix
element hp. In the regime 6hp, 6 e, ktt T« 6 cop (but
kz T/hd p and ktt T/he arbitrary), where A, top is the ener-

gy of excitation in a single well, the original double-well
potential problem can be truncated to an effective dissi-
pative two-level system. '' The dynamics of the isolated
system is simply described by the pseudospin Hamiltoni-
an Hp= —(5 o,p+ cr,e)6/2. If we assume that the sys-
tem starts out at time t =0 from one of the two states,
say from o, =+1, then the evolution is described by
P(t) =(cr, (t)). In the absence of dissipation P(t) shows
oscillatory behavior, P(t) = e /4b+ (&p/Ab )cos(4bt ),
where 6b =(ho+a ) 't . It has been shown by Kondo'
that the screening cloud of the normal-state conduction
electrons causes long-range interactions between tunnel-
ing transitions of the form Q(t) =S(t)+ itrKsgn(t),
where

S(t) =2%in sinh
AD

ph

Here D is of the order of coo. We note that an Ohmic
heat bath set up by bosons leads to the same form of in-
teraction as given in (1). The formally exact solution of
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P(i) in the form of a power series in ho is given by
' n —I

l2 n

dtI g cos $IKK eg (,j(i2/ i2/ —I)
Ig =+ 1fJ

exp X +2j,2j —I Z gjgkAj kj=l j,k=1
j&k

(2)

Here we have arranged the tunneling transitions in pairs,
usually called bounces. Each bounce may be viewed as a
neutral pair of charges q ~ =+'1, where the label (,/= + 1 indicates whether the charge q+ is preceded or
succeeded by the charge q —.The pair potential S2j 2j=S(t 2/

—r 2/ I ) —denotes the self-interaction of the
bounce j and Ajk represents the set of interactions be-
tween the bounces j and k,

Ajk +2j, 2k —
I ++2j —1,2k +2j,2k +2j —1, 2k —

I ~

Finally, the sum over the label g/. in (2) runs over the 2"
possibilities of arranging n bounces of two diff'erent

types.
For later convenience we decompose P(t) as P(t)

=P+(t)+P —(t), where P+(t) and P (t) denote the
symmetric and antisymmetric contributions with respect
to the bias Ae, respectively. In the limit t ~, P+(t)
drops to zero while P —(t) approaches the equilibrium
value P We not. e that P(t) is the relevant quantity in
experiments on macroscopic quantum coherence. ' The
other dynamical quantity of interest is the symmetrized
equilibrium correlation function C(t) = [(a, (t )(7, (0))
+(o, (0)a, (t))]/2, which is relevant in the neutron-
scattering characteristics of the system. By comparing
(2) with the corresponding exact path-integral expres-
sion for C(t), we find the relation

C(r) =P+ (i) +P P (t) . —

Here we have neglected spin-bath correlations between
the positive- and negative-time parts of the path (see
Ref. 4, p. 35). While these correlations are relevant for
the algebraic long-time tails of C(t) for T=O, their
eff'ect on the neutron-scattering characteristics is negligi-
bly small. The inelastic part of the neutron-scattering
function for a system tunneling between positions d/2
and —d/2 is related to the Laplace transform C(p) of
C(t) by ' S(k, io) =sin (k d/2) J(ro)/Iz, where J(ro)
=2ReC(p =iso)/[I +exp(Pkco) l is the structure factor.

The true frequency scale of the problem is set by the
eff'ective tunnel splitting of a symmetric two-state system
at zero temperature,

[ ( K)l (I 2K) ] I/(2 —2K)/ (/ /D) K/(I —K)

It is convenient to introduce dimensionless frequencies
k =p/A, v =co/A, a = e/A, and temperature z =kg T/6 A.
By extracting a thermal detailed-balance factor the di-

( ) ( )2K I I (K+ K//2zz)

r(I K+~/2~—z)
'

where k+. =X ~i(T and where I (z) is Euler's gamma
function. In the corresponding expression for c(X)
=AC(p =RA) the asymmetric contribution in o of (7) is

multiplied by P, where P is the limiting value of
Xp(X) as k 0. Further, the structure factor j(v) is

given by'

j(v) =Rec(k=iv).

It follows from (7) and (8) that P(t) approaches the
equilibrium value P =tanh(cr/2z), regardless of the pa-
rameter K. Hence the DBGA predicts a symmetry
breaking as z 0 for arbitrarily small K and arbitrarily
small bias. This result is in marked contrast with the ex-
pectation based upon a standard quantum-mechanical
analysis' that for K«1

P = (a/crb )tanh((Tb/2z), (10)

where ab = (1+(T ) '/ . From this we may conclude that
for a biased system with K« 1 the bounces actually form
a dilute gas only for temperatures where the above re-
sults for P concur with P =a/2z. This is the case in

the region z~ zp where zp=o.b. Another indication for
the breakdown of the DBGA below zo is that j(v) be-
comes negative within the DBGA around v =0 for z ( z,
where z, = zp. This clearly is an unphysical result.

We now examine the self-consistency of the DBGA for
K « 1. It is obvious that for fairly high temperatures (1)
may be approximated by

g(t) =2Kd xzln(D/22zzA)t .

J(vA) = (2/A) j(v)/(1+e' ') .

Clearly, it is impossible to evaluate the complete series
(2) for arbitrary K. We shall be able, however, to do so
for weak damping E«1 and also for E = —,

' .
Let us first brieAy consider the DBGA which is for-

mally obtained by disregarding the interactions Ajk in

(2). Then, the series (2) is in the form of a convolution
and the Laplace transform P(X) =dP(p =RA) can be
summed to

1 —tan(2rK) [g(X+) —g(k )]/2ik
p(&) =

X+ [g(X+)+g(X )]/2
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With this choice the interbounce interactions A~I, defined
in (3) cancel out, and P(X) is found from (1) exactly in
the form (7) with

g(~) =a'/(X+2~zZ), (i2)

where u =4rzzK, v =u /4+cd +8',
Decomposing (9) with (13) into partial fractions the
spectral function j(v) is obtained in the form

1 A|1'+ (Vp V)A2 1 Alp+ (Vp+ V)A2J(V)=
2 2

+
(V Vp) +P 2 (V+Vp) +1'

+ A3y,
+ fr

(i4)

where k = —y„and X = —
y ~ ivo are the real and com-

plex roots of the cubic pole condition in (13), respective-
ly. For zp(z(z&, where z|=1/2rzK, we find from the
cubic equation the approximate solutions

2 2+p2 ( ~g ) 2(g4y4 2)/( 2+F2)2

y =~ez(2~'+ S')/(~'+ &'),

y„=2rzEz6 /(cr +6 ) .

Further, the amplitude factors in (14) are given by

W )
=1 —cr2/vp2, A2 =A, (y —y„)/vp,

(i6)
= a2/v2 —p

where P =cr/2z Thus we fin. d that the structure factor
has two narrow resonances of width y around v = ~ vo

describing inelastic scattering and a third resonance of

where 8 =(2rzz) /I (1 —2K). On comparing (12) with
(8) we see that the condition for the self-consistency of
the DBGA is 2rzz» ~X+. ~, which in the relevant fre-
quency range indeed corresponds to the temperature re-
striction z) zp. With use of (4), (7), and (12) we then
find in the parameter region E(&1, z~ zo, and arbitrary
bias, the solution

1 8 X+(1 —cr /4z )w

X +uk +vX+w

dte " 'cos(et)S(t),kp(X) = —A, (is)
while kl (1) describes the sum over all irreducible multi-
bounce clusters. These are configurations in which the
first bounce interacts with the last one. After performing
the gJ summation in (2) we find

width y, around v=0 describing quasielastic scattering.
The relative intensity of the inelastic peaks of J(cp) is
governed by the detailed-balance factor in (6). Corre-
sponding, P(t) and C(t) show damped oscillations with
frequency vo and damping rate y. In addition, there is a
contribution describing relaxation with a rate y„ into the
equilibrium values P(t~ ~) =P and C(t~ ~) =P
respectively. As the temperature is increased from z= zo

to z —z&, vp initially increases and then droPs down
again, while y and y„ increase linearly with temperature.
Near the temperature z~ the three peaks of j(v) merge
into a single broad quasielastic peak. Now, it is essential
to insert into (14), instead of (15), the exact solutions of
the cubic pole condition. So it is more convenient to
compute j(v) from the original expression (9) using
(13). Only for high temperatures z»z~ does this ex-
pression simplify to j(v) = y„/(v + y„), where y„ is the
tunneling rate

)„=Z(2«)' "/[(2~aC)'+~'l.
As the temperature is increased further the quasielastic
peak narrows according to the power law z '. This
anomalous behavior has been observed by neutron spec-
troscopy for hydrogen jump rates in Nb(OH) .

In the low-temperature region z& zo the approxima-
tion (11) for S(t) is not valid. We should expect, there-
fore, that it is inconsistent to drop the interactions A~I„
and this is indeed what we find for a biased system.
Now, for weak coupling the systematic treatment is to
keep the interactions A~k of linear order in E in the self-
energy of the system. We then find from (2)

1+rzlc. (cr/X )/(X 2+ cr 2)

~+~/(~'+~')+k(~) '

where k(A, ) =kp(k)+k1(A, ) is the self-energy correction
of linear order in K. Here, kp(k) is the contribution kept
in the DBGA,

OO P OO n —
1 n —

1

kl(k) = —g ( —1)"4 " 'Q ds e 'Q dr;e 'A„sin(es, )sin(es ) Q cos(esk),
n=2 )Jo k=2

(i9)

where s~ =t2j —
tz~ —

&
is the length of the bounce j and

where r~ =tq~+ ~

—
tq~ is the interval between the bounces

j and j+1. Note that k|(k) vanishes for a symmetrical
system, as already mentioned before, while it becomes
relevant for a biased system in the region z~ zo. Use of
the dilute-gas approximation for these clusters gives the
result (17) with (18) and (19). Now, it is consistent to
make this approximation, since the eff'ect of the neglect-
ed interactions is of order Jt only. Next, it is important

that the expressions kp(X) and ki(X) can be evaluated
exactly for the pair potential (1). With the use of a
spectral decomposition of (1) and with changes of the or-
ders of intergration we finally obtain

k(X) = K[2X's(X)+cr2%+K K+s(X —)+X s(X+)]j
(X+X crb ) '

s (z) = y(1+z/2rr z) —rzz/z+ ln(2rzz), (2O)
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where k+. =X+ icr and X~ =k+ icrb, and where y(z) is
the digamma function. The formula (17) with (20)
gives the complete solution to the dynamics of the biased
system in the weak-coupling case at low temperatures.
We note that (17) yields the correct expression (10) for
P . Further, P(X) possesses simple poles at A,

= —y„
and X = —y+ivo, where

vo = crt', + 2K[Re@( I+ icrt /2trr) + ln(2trr) l,
y„=ttKcoth(ctb/2r)/crt, ,

y = ) „/2+ 2ttKcr'r/ap .

(21)

(22)

h (z) = ilt(I/2+ I/4tr r+ z/2 rt)t, (23)

which enables us to compute P(t) and especially P
= (2/tt)Imh(ict) We rem. ark that the DBGA also gives

P(X) in the form (22) where, however, the term I/4ttr in

the argument of h(z) is omitted. Readily the structure
factor is obtained as j(v) =Re[P+(X =iv)+P p —(A,

=iv)I This formul. a describes a broad non-Lorentzian

These formulas give the correct solution for 56&&1 in the
region ~~ ro. The structure factor is found again in the
form (14) with amplitude factors A i

= I/ob, A2 =A i (y
—y; )/ot„and A 3

= [iT/crt, cosh (crb/2r) ] '. Note that
(21), and also j(v), smoothly matches with the above
DBGA results near r = zo. Now, in contrast to the
DBGA result, the amplitude of the quasielastic peak is
positive for all z, and it vanishes for r =0.

For the special value EC=
& the spectral properties of

a biased two-state system can be determined exactly for
all temperatures. The crucial point now is that for
E —,

' all cos(trK) factors in (2) need to be compensat-
ed by divergent factors I (1 —2K) arising from the
short-distance behavior of the attractive interactions in

(2). It is found that in the expression for p+(X) the
bounce lengths shrink to zero in the limit E 2, so that
the interactions Ajt, cancel out exactly, yielding p+() )
= I/(I+) ). The expression for p —(X) has one
cos(ttK) factor less. The rigorous analysis shows that
now the first bounce is substituted by an irreducible mul-
tibounce cluster, which again can be evaluated exactly.
In the end we find that exact result

line shape. Again one finds that j(v) is positive for all
temperatures while the corresponding DBGA result be-
comes negative around v =0 for su%ciently low tempera-
tures.

In conclusion, a major result of this work is that the
structure factor shows a quasielastic peak in addition to
the inelastic peaks in the region of weak coupling, non-
zero bias, and low temperatures ~&& z~.
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