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Scaling Ansatz for Swendsen-Wang Dynamics
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Using cluster and percolation concepts, we obtain a relation between relaxation times at critical points
obtained from a new dynamical model introduced by Swendsen and Wang and those obtained from
Glauber dynamics. This relation, which involves only static critical exponents, provides new insight into
the physics underlying cluster acceleration methods such as the one introduced by Swendsen and Wang.
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It has been known for some time that percolation and
cluster concepts are useful tools for understanding
thermal phase transitions. Critical points in Ising mod-
els ' and in Pot ts models as well as in nucleation are
phenomena that have been elucidated with the ideas of
clusters and percolation. The application of these
geometric concepts has been, for the most part, to equi-
librium or quasiequilibrium problems. Recently, howev-

er, Swendsen and Wang (SW) have applied these clus-
ter ideas to define a new simulation dynamics with the
same conservation laws as Glauber dynamics. The
essential difference is that in SW dynamics, clusters
rather than single spins are flipped. The flipping of clus-
ters results in a decrease in critical slowing down, which
reduces substantially the time requird to obtain equilibri-
um properties near critical points.

Although this method is intriguing and can be very
useful, there is no understanding of why it works, or why
critical slowing down is not eliminated altogether. We
propose a first step in the direction of constructing a
theory of the SW dynamics. Specifically, we present a
scaling argument from which we obtain a good approxi-
mation to the value of the dynamical exponent z ob-
tained by SW as well as insight into the physics underly-
ing the method.

The exponent z can be defined through dynamical
correlation functions. For example, if we denote the
magnetic correlation function 0(t), then z is defined by
8(t) —exp( —t/r) and r —g', where t is the time and g is
the correlation length. For Glauber dynamics, z —2 for
Ising models (see Table I) and about 2.2 for the q =3
Potts model in two dimensions. ' It has been shown"
that algorithms with local dynamics have a lower bound
for z of yi'v. In SW dynamics this limitation is avoided

by flipping clusters rather than spins thereby construct-
ing nonlocal dynamics.

In order to make the argument for our scaling Ansatz
more transparent, we present a slightly different descrip-
tion of SW dynamics than that presented in Ref. 8. We

where P is the inverse temperature, 6 is the Kronecker
delta, o. labels the Potts states, the occupation numbers

n; are 0 or 1, t), is the chemical potential, and the sum is

over all pairs. The second two terms on the right-hand
side are the lattice-gas Hamiltonian and the first term is

a Potts interaction between sites which are both occu-
pied.

The Hamiltonian in Eq. (1) can be used to describe a
percolation problem. Specifically, if we diff erentiate the
corresponding free energy with respect to q and take the
limit q 1, we obtain the generating function for the
random-bond correlated-site percolation model. In this
model the distribution of occupied sites is governed by
the lattice-gas Boltzman factor and the bonds are distri-
buted at random between occupied sites with a probabili-

ty

ps =1-exp( —J) . (2)

Clusters are defined as sets of occupied sites connected,
either directly or indirectly, by bonds. If J is chosen to

TABLE I. The line designated by zsw contains the values
obtained by SW with the exception (Ref. 21) of the d =4 Ising

(d) (df )
model. The notation zsw and zsw denote values obtained
from Eq. (6) with d~ equal to d and df, respectively. Values
for the static exponents are from Refs. 22-24 and zG for the
d =3 Ising is taken from Ref. 25.

Ising
d=2

Ising
d=3

Ising
d=4

Potts (q =3)
d=2

(d)
ZSW

zSw
(df )

zSW

0.39 ~ 0.05 0.73+ 0.02 1.0
0.35 ~ 0.01 0.75+ 0.01 0.97 ~ 0.09

0.27 ~ 0.05 0.45 + 0.04 0.667

0.45 ~ 0.05

0.6+ 0.01

0.32 ~ 0.05

begin with the q-state dilute Potts model with the Ham-
iltonian 0

& given by

—pHi =Jg(6, .
—1)n;ni +Kg.n;n1 —dan;,
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be equal to K/2, then it can be shown' that the percola-
tion transition is the same as the Ising or lattice-gas
transition. That is, the Ising critical point is also the per-
colation transition, and the critical exponents of the two
problems are identical. The divergence of the correlation
length and the connectedness length are described by
critical exponents with the same numerical value. The
same is true for the susceptibility and the mean cluster
size as well as all other singular quantities. Equivalently
this mapping selects the "Fisher droplets" ' for the Ising
critical point, i.e., a set of noninteracting clusters or
modes which describe the critical point.

We can define another Hamiltonian, pH2, where holes
rather than particles interact so that the n; in Eq. (I) are
replaced by 1 —n;. Clearly the above discussion still ap-
plies. If we now define a Hamiltonian H =H ~+H2, the
above discussion still applies except the value for J is
shifted to EC so that the bond probability is pb = 1
—exp( —K). This symmetrized model is the one used

by Swendsen and Wang. Consequently, SW take as
their fundamental objects clusters at the percolation
threshold, rather than single spins. This argument can
be generalized to Hamiltonians similar to Eq. (I), where
the lattice-gas Hamiltonian is replaced by a q-state Potts
interaction.

In order to understand how the SW algorithm results
in a modification of z, we need to examine the expression
z—g' with more care. At a critical point there are two
important lengths, the correlation length and the small-
est length scale in the problem, / For systems on a lat-
tice where a local algorithm is used / is clearly the lat-
tice constant. All times, such as the time associated with
critical slowing down, are functions of / Nonlocal algo-
rithms modify /in a nontrivial manner and hence /must
be treated carefully. In the development of Fourier ac-
celeration techniques by Batrouni et al. ,

' this idea is
treated in some detail. We take as our starting assump-
tion that the SW algorithm modifies z by modifying 8

In order to obtain the dependence of z on / we need a
model for the dynamics of equilibration near critical
points. We argue that a plausible mechanism for equili-
bration in the Glauber model is the diffusion of domain
walls. This mechanism is clearly the case in one-
dimensional Potts models, since the probability of flip-

ping a spin in the interior of a domain vanishes as
exp( —I/kii T) as T approaches the critical point T, =0,
while the probability of flipping a spin at the boundary of
a domain remains 2 independent of T.

Additional support for the domain-wall diff'usion
mechanism can be obtained from considering the dynam-
ics of critical slowing down in mean-field Glauber mod-
els. One approach is to investigate tunneling in a p
theory near the critical point for long-range interac-
tions. ' In this limit the tunneling process can be treated
with saddle-point techniques. ' For this model it is
straightforward to show that the growth or decay of

domains is centered on the domain surface. '

These considerations suggest the Ansatz that equili-
bration is dominated by diffusion of domain walls. In
turn this assumption implies that z —l /D, where D is a
diffusion constant which contains information about the
domain wall and I is the distance that the domain wall
diffuses. In the vicinity of the critical point decorrelation
occurs when l=(. On physical grounds one would ex-
pect that since the domain wall is correlated on a length
scale g, D will vanish as the critical point is approached,
leading to anomalous diffusion.

Our Ansatz is that Glauber dynamics can be described
as a diffusion process of the domain walls in a "back-
ground" of the interior domain spins. If al/ length scales
in the problem are rescaled so that /is no longer the lat-
tice constant, the diffusion constant will remain un-
changed and the time will be rescaled only by the rescal-
ing of l, or at the critical point, g. If we take Fto be the
lattice constant for single spin-flip dynamics, then after
rescaling the fundamental length to /we have

D g 2//2 g //2 (3)

WT '-/p-,d
(4)

where d is the mean fractal dimension of the finite clus-
ters. Unfortunately, we do not know the value of d
However, we can reasonably assume that it lies between
d, the spatial dimension, and df =d —p/v, the fractal di-
mension of the incipient infinite cluster. These bounds
follow from the idea that clusters with a strictly finite
length (i.e., X&A & ~) should have d =d and arbi-
trarily large finite clusters should have a structure ap-
proaching that of the incipient infinite cluster. '

If we now replace Zby P in Eq. (3) and use Eq. (4)
and g =AT 'we obtain

„z—2y/d v
Z

In order to obtain values for z in the SW dynamics, we
need to know how /varies as the critical point is ap-
proached. As discussed previously, in SW dynamics the
clusters are flipped at the percolation threshold. The
largest length is the correlation length, which is the
linear size of the incipient infinite cluster. ' The smallest
length in the problem is more complicated. Since clus-
ters of various sizes are flipped, there is no unique funda-
mental smallest length. However, since the clusters are
independent, we can treat the problem as a collection of
clusters all of the same size with mean linear dimension

We denote the minimum length /=g.
In order to determine g we employ the following scal-

ing argument. The mean mass of the finite clusters
diverges as AT z, where hT=(T —T, )/T„T, is the
critical temperature, and y is the Ising susceptibility ex-
ponent. ' We have then
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or

zsw =zo —2y/d v,

where zsw and zG are the SW value and Glauber value
for z, respectively.

For the d =1 Ising model, zG =2 and since d =df =1,
zsw =0, ' consistent with Eq. (6). Table I summarizes
the numerical values of zsw calculated from Eq. (6) for
Ising models in 2D, 3D, and 4D and the q =3 Potts mod-

el in 2D. The numerical values found by Swendsen and
Wang are included for comparison.

Our scaling argument explains why zpw increases with
dimension rather than decreasing like z6. Second, the
numerical values for d =d are quite good. If the ar-
gument is correct, zg is an upper bound for zsw and

zsw is a lower bound. The value for zgw for the q =3(d, ) . &d)

Potts would appear somewhat low. This value could be
caused by the value of zg that was used. ' If, for exam-

ple, we take the average of the measured values of zg
quoted in Table I of Ref. 10, the value of zg increases
to 0.62. Clearly a better value of zg would be of interest.

The basic assumption we have made to obtain these
results is that the SW algorithm works by modifying the
basic fundamental length in the problem. Specifically,
the lattice constant is replaced by the size of the finite
clusters. The agreement with the numerical calculations
of SW would indicate that the assumption is fundamen-
tally correct. This argument then implies that an at-
tempt to develop a theory of SW dynamics should ad-
dress itself to "renormalizing" the smallest length in the
problem. It should also help in understanding the gen-
eralization of SW to continuum models. '

In addition to what can be learned from these con-
siderations about SW, several points can be made about
critical dynamics. If, as seems plausible from the nu-

merical results, Eq. (6) is exact for some value of d (ei-
ther d or something close to d), then information about
Glauber dynamics can be obtained much more readily
from SW and translated back to Glauber dynamics via

Eq. (6). Moreover, there would appear to be a different

type of universality classification for critical dynamics
then previously expected. The assumption, invalidated

by SW, was that universality classes in critical dynamics
were determined by the usual parameters associated with

static critical phenomena and the conservation laws.
Our results imply that the new universality class generat-
ed by SW is in fact related to Glauber by static critical
exponents. This raises the possibility that the same is
true for other acceleration methods such as Fourier ac-
celeration, ' the SW multigrid hybrid proposed by Kan-
del et al. ,

' and the extended SW algorithm of Edwards
and Sokol. Clearly more work is needed to understand
what might be called static-equivalent universality.

This work also raises the following extremely intrigu-
ing possibility. That is, Eq. (6) can be rewritten as

zG —zsw=2y/d v, where the right-hand side is a static
quantity. The value of zG is determined by equilibration
on all length scales, but zzw contains information only
about modes of equilibration on length scales greater

y/d vthan /=g . The difference zo —zsw should then con-
tain information about equilibration length scales less
than / Equation (6) implies that this equilibration is de-
scribed by static quantities only and hence may be in-
dependent of conservation laws. It would be of great in-
terest to have a procedure equivalent to SW in models
with different conservation laws.

Clearly what we have presented is not a theory. How-
ever, we think that the insight this work provides into the
physics underlying the SW method will help in the devel-
opment of a theoretical basis for cluster acceleration al-
gorithms. In addition, we believe that the development
of such algorithms will lead to a deeper understanding of
critical dynamics.
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