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Defect-Mediated Turbulence
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We describe a turbulent state characterized by the presence of topological defects. This “topological
turbulence” is likely to be experimentally observed in nonequilibrium systems.
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The problem of phase transitions received a great deal
of attention during the 1970’s.! Especially exciting has
been the study of transitions in 2D systems.? The speci-
ficity of such transitions is related to the predominant
role of defects.® In a quite different context, the destruc-
tion of the macroscopic two-dimensional order presents
striking similarities* with these transitions. Theoretical
attempts® to explain these similarities take into account
the presence of stochastic fluctuations. The aim of this
Letter is to reconsider this problem in the light of ideas
coming from dynamical systems theory.® More precise-
ly, using numerical simulations performed on a deter-
ministic dynamical model, we intend to clarify a mecha-
nism of defect creation in macroscopic structures. Our
main result is that phase turbulence’ in sufficiently ex-
tended bidimensional systems leads to the creation of to-
pological defects.® The resulting dynamical state has
been studied in detail by means of numerical simulations
performed on the simplest model which displays this be-
havior.

Among all the transitions in macroscopic systems, the
simplest one consists of the appearance of spatially syn-
chronized oscillations. Such transitions to “temporal or-
der” arise naturally in chemical and biological con-
texts.”*1® We consider an isotropic, two-dimensional
medium, and assume that it starts oscillating when some
control parameter is varied. The typical quantity Q
describing the system, as a chemical concentration, reads

0 =00+ {4 expliogt) + Aexp(—iwgt )} + - - - .

The first term in this expansion describes the constant,
time-translationally invariant part of Q, while the second
one accounts for the symmetry breaking; the ellipses
stand for small corrections. Such an expansion is only
valid when |A]|, |8.4]|, and |VA| are small enough.
The complex field 4, which measures the “amount of
broken symmetry,”!! is called the order parameter. It
obeys a Ginzburg-Landau 12 type equation:

8A4/8t =(u,+iu;) A+ (a,+ia;)V2A
—B,+ip) A4, Q)

where u; represents a shift in frequency, u, measures the
deviation from the transition threshold, a; and B; are as-
sociated with dispersion effects and nonlinear frequency

renormalization, and @, and B, correspond to diffusion
effects (a, > 0) and to nonlinear saturation (8, > 0). In
the spatially homogeneous case, Eq. (1) is the amplitude
equation of the so-called Hopf bifurcation.!> When all
the coefficients are real numbers, one recovers the
mean-field theory (Ginzburg-Landau) of superfluidity.
In this limit, Eq. (1) is the potential, and if thermal noise
is added, the dynamics eventually converge toward the
defect-free solution, the absolute minimum of the Ginz-
burg-Landau potential. In the following, we consider the
deterministic evolution associated with Eq. (1), and we
will show that it contains, for some range of parameters,
a mechanism of defect creation.

The so-called perfect temporal pattern corresponds to
a particularly simple solution of Eq. (1),
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When a,+a;B8;/8, > 0, such a solution is linearly stable.
Sideband or modulational instability6 arises when «a,
+a;B:/B, changes sign. Near the instability threshold,
one can reduce the dynamics of Eq. (1) to an equation
for the phase only,

8.0 =C(a,+a;Bi/BIVo+ - , )
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where ¢ is implicitly defined, at leading order, by
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and A4 obeys Eq. (1). The nonlinear extension of Eq.
(2) ":'* gives rise to turbulent regimes,'>'® which corre-
spond to “phase turbulence”’ (see Fig. 2, 8; = —0.80).
This turbulence leads to a weak destruction of the tem-
poral order induced by the periodic pattern, since the
correlation function of the field {A4(x,y1,1)A(x2,y2,t)),
where () denotes time averaging, decreases very slowly.
Far from the phase instability threshold (a,+ a;B:/8,
<« —1), the adiabatic elimination of the amplitude mode
which leads to Eq. (2) breaks down. The turbulent-state
solution of Eq. (1) which strongly couples amplitude and
phase modes has been termed as ‘“amplitude tur-
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FIG. 1.
(dashed).

(a) Instantaneous state of Re(A4) (a; =2, ;= —0.85). (b) The corresponding lines Re(4) =0 (solid) and Im(A4) =0

bulence.””!” This turbulence leads to a strong destruction of the temporal order characterized by an exponential de-
crease of correlations (see Fig. 2, 8; = —3.00). When p,, a,, and B, are small, Eq. (1) can be seen as a perturbation of
the 2D nonlinear Schrodinger equation. This leads'” to an interpretation of the strong amplitude turbulence in terms of
the self-focusing phenomenon.® The aim of this Letter is to underscore the existence of a turbulent regime associated
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FIG. 2. Numerical results for ;=2 and various values of B;. (a) Distribution of the complex field 4 {p(a+ib)dadb

=Pla=Re(A4) <a+da and b <Im(A4) <b+dbl} computed by time averaging for f; = —0.8, and its successive radial cross sec-
tions. (b) Correlation function as a function of position. (c) Mean number of defects in the box. (d) Correlation length. (e) Mean
distance between a defect and its nearest neighbor.
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with the presence of topological defects, which turns out
to interpolate between the two forms of turbulence de-
scribed above (see Fig. 2, B; = —0.85 and B; = —1.30).
Actually, when increasing |a,+a;B;/B,|, amplitude
modes are progressively awakened and, in two dimen-
sions, the existence of localized amplitude modes (stable
topological defects) allows a nucleation transition, which
is reminiscent of those observed in condensed matter
physics. '8

Stable topological defects® are singular solutions of
Eq. (1). At the core of a defect, the real part and the
imaginary part of the order parameter 4 both vanish.
This solution takes the form of a spiral wave’ (see Fig.
1) which propagates out of the core. In what follows, we
place ourselves in the phase-unstable regime, namely,
a,+a;Bi/B, <0, and study the behavior of the solutions
of Eq. (1). Initial conditions are chosen close enough to
the homogeneous solution A¢: u,=1, u; =0, a,=pg,
=1." The simulations reported here have been per-
formed on a CRAY-2 with a 2D periodic-boundary-
condition spectral code, with 80x80 collocation points,
in a box of 5050 units of length.

As expected, the system first follows a phase regime.
Then, the dynamics eventually evolve toward a more
disordered regime due to the nucleation of pairs of de-
fects. The defect creation mechanism is simple enough.
From time to time, a phase gradient becomes important.
This leads to a pinching of the equiphases, and eventual-
ly to a shocklike event which, in turn, is responsible for
the creation of the pair.?’ Figure 1(a) displays, in the
asymptotic regime, an instantaneous state of the real
part of A4 which exhibits a small number of spiral defects
[see the equiphases in Fig. 1(b)]l. Large areas with
quasicoherent phase [black and white regions in Fig.
1(a)l, separated by the arms of the spiral waves, are ob-
served. In the time evolution, defects move, new pairs
are created, and others annihilate. This leads to a com-
plex spatio-temporal behavior termed “topological tur-
bulence,” which is characterized by short-range correla-
tions (see Fig. 2, B;=—0.85 and B;=—1.30). In this
regime, the correlation length is found to be of the same
order as the mean distance between a defect and its
nearest neighbor (see Fig. 2), which supports the idea of
“defect-mediated turbulence.”

Various numerical simulations have been performed,
for different values of a; and B;. Figure 3 displays the
mean number of defects?! in the box as a function of a;,
for B;=—2. We have checked numerically that this
number scales linearly with the size of the box. The be-
havior observed in Fig. 3 suggests a first-order phase
transition, which is confirmed by the existence of a hys-
teresis loop.

For a; fixed, the mean number of defects decreases
when |B;| decreases. For small values of ],Bil, the
number of defects as a function of time is strongly inter-
mittent and alternates between zero and a mean number
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FIG. 3. Number of defects as a function of ai —al for
Bi=—2 (af=—1/8;=1%). Squares are obtained with initial
conditions chosen around the homogeneous solution (see text).
Crosses correspond to hysteresis.

of defects which decreases with |B;|. As | Bi | increases,
more and more delocalized amplitude modes are awak-
ened, and topological turbulence transforms itself pro-
gressively into amplitude turbulence (see Fig. 2).

Topological turbulence exists in other physical sys-
tems, as for instance in those giving rise to wave pat-
terns.?? The defects associated with these patterns have
been discussed in a previous work.?> They are disloca-
tions and domain walls from which two counterpropagat-
ing waves emanate. As expected, the topological disor-
ganization of such patterns exhibits these two kinds of
defects when an external constraint is varied.?*?’ Work
in this direction is in progress.
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