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Binding and Unbinding of Lipid Membranes: A Monte Carlo Study
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The behavior of' interacting fluid membranes is simulated using a vectorized Monte Carlo code. The
Monte Carlo data give clear evidence for the existence of continuous unbinding transitions from a bound
to an unbound state of the membranes. The location of the phase boundary and, thus, the macroscopic
membrane state is found to be strongly afTected by shape fluctuations on microscopic length scales. The
observed critical behavior confirms theoretical predictions even though the accessible critical region is
severely restricted by the rapid growth of relaxation times.
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Biological membranes form the surfaces of cells and
organelles and, thus, give rise to an amazingly complex
and diverse architecture. ' Nevertheless, all biomem-
branes have the same basic structure: A lipid bilayer
which is "decorated" by various macromolecules. The
physical properties of such bilayers have been intensively
studied during the last decade. One useful concept
which has emerged is that the shape of membranes is
mainly controlled by bending elastI'cI'ty and, thus, by cur-
vature. Likewise, typical shape fluctuations are thermal-
ly excited bending modes which can be directly observed
in the microscope.

In this paper, we explore the possibility of studying
fluctuating membranes by computer simulations. Such
simulations should be useful for many membrane phe-
nomena. Here, we study the shape fluctuations of a
membrane which interacts with another membrane or
surface. This interaction has an attractive part which
leads to a bound state of the membrane and, thus, to a
confinement of its fluctuations. Such a confinement
turns out to be crucial for computer simulations since the
relaxation times grow very rapidly when the membranes
become unbound.

Interactions of membranes play an essential role for
many biological and biophysical phenomena. For exam-
ple, attractive interactions between cell membranes lead
to mutual adhesion or binding of cells. Likewise, many
transport processes involve the binding and unbinding of
vesicles to and from the membrane surfaces of cells and
organelles. ' This latter process can be used for the
delivery of drugs to specific cell types. Another example
is the construction of biosensors which is often based on
the binding of membranes to solid surfaces.

If one ignores thermally excited fluctuations, the mem-
branes can be regarded as planar sheets which interact
as a result of various intermolecular forces. This direct
interaction consists of two contributions: Nonspecific"
interactions such as those arising from van der Waals
and e1ectrostatic forces, and "specific" interactions medi-
ated by biologically relevant macromolecules.

Shape fluctuations give rise to an efIective repulsion

between the membranes. The interplay between this
fluctuation-induced repulsion and the direct interaction
can lead to continuous unbinding transitions at a finite
unbinding temperature T„, as has been found from
renormalization-group calculations. For T (T„ the
membranes are bound together, while they are unbound
for T & T„. The critical behavior at T„depends on the
internal membrane structure which can be fluid or crys-
talline. Very recently, unbinding transitions have been
observed experimentally for fluid digalactosyl diclyceride
(DGDG) membranes.

Here, we present the first Monte Carlo (MC) simula-
tions for unbinding transitions of fluid membranes. We
find clear evidence for the existence and for the continu-
ous nature of such transitions. The unbinding tempera-
ture T, is found to depend strongly on the choice of the
small-scale cutoA a. Thus, fluctuations on microscopic
scales have a strong effect on the location of the phase
boundary. Furthermore, equilibration near the transi-
tion is very slow: The relaxation time tz scales as
ttt = t„(g~~/a)', where g~~ is the parallel correlation
length, with z =4 and t„ found to be of order 100 MC
steps (per site). In fact, our simulations were only feasi-
ble because we used a fully Uectorized MC code on a
Cray XM-P computer.

Our method can, in principle, be applied to arsy in-
teraction V(l) of two membranes with separation l.
Below, we describe results for several model interactions:
(i) We brielly discuss the harmonic interaction, V(l)
= —,

' G(l —lo) . The associated critical behavior is trivial
and can be obtained analytically which provides a useful
test for our MC code. (ii) Next, we consider the interac-
tion defined by

~ for l(0,
I'I for l )0,

where P represents an efrective external pressure. For
P )0, the membranes are bound, but they unbind as P
goes to zero. (iii) The simplest interaction which should
lead to an unbinding transition with finite unbinding
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temperature T, is given by the square-well interaction,

~ for l&0,
V(l) = —8' for 0 &1 & lo,

0 forlp&l.
(2)

This interaction depends on two parameters, 8' and lp.
For several values of lp, we locate the critical point with
W'=W„(lo) at which the membranes unbind in a con-
tinuous fashion. Thus, the corresponding phase diagram
exhibits a line of critical transitions (shown in Fig. 2).
The critical behavior along this line is universal.

We have also studied more realistic interactions such
as the superposition of hydration and van der Waals
forces, and determined critical unbinding transitions for
several interaction parameters. These simulations, which
are still in progress, will be described in a future publica-
tion.

To proceed, consider two membranes with coordinates
l~(x) and 12(x), and separation l=l~(x) —lq(x). Both
membranes are assumed to be fluid which implies that
their bending energies per unit area are given by

2 i~~(V l~) and —,
'

icq(V 12), respectively. Here, V l~

and V l2 are the leading terms of the mean curvature,
and the bending rigidities K] and x2 are of order
10 -10 ' J. The eAective Hamiltonian for their
separation l(x) is then given by

with the discrete Laplacian

Vdl; =l(x;+ax~ )+ l(x; —ax~ )+ 1(x;+axe)

+1(x; —ax2) —41(x;) .

&[1]/T=„d'x[ ,' (~/T)(V'1-) '+ V(t)/T],

with x =ir~x2/(tr~+ K2) and temperature T. This contin-
uum model implicitly contains a microscopic cutoA a
which is of the order of the membrane thickness.

In the MC work, the spatial coordinate x is replaced
by a square lattice with lattice sites [x;I and lattice con-
stant a. The membrane configuration is then specified
by 1;=l(x;), and the eff'ective Hamiltonian becomes

& jl;j/T=g [ —, (x/Ta )(Vdl;) +a V(l;)/T], (4)

a discrete representation for the smooth shape of the
membranes. For Quid membranes as considered here, a
MC simulation of the actual motion of the molecules is
difticult since these molecules can diA'use freely within
the membranes. In contrast, a simulation of the molecu-
lar motion is simple for crystalline (or tethered or po-
lymerized) membranes for which the molecules form a
two-dimensional network of fixed connectivity.

Our simulations have been performed on a Cray X-
MP 22 and on a Cray X-MP 48. A fully vectorized code
was used: The lattice was divided into nine sublattices
such that each sublattice can be updated independently
in a vector loop using the usual Metropolis algorithm. In
this way, we have studied NXN square lattices with
periodic boundary conditions for N=11, 20, and 41. We
also did some runs with N=80 in order to check for pos-
sible finite-size eA'ects. In most runs, we did =10 MC
steps (per site) which gives a statistical error of a few
percent as long as the relaxation time tR, defined in (8)
below, satisfies t~ ~ 5 x 10 . For larger values of tg, up
to tR =10, we did =10 MC steps.

In each run, we measured the mean separation 1 =(1)
of the membranes and various quantities related to their
Auctuations. In the continuum limit, the two-point
correlation function is defined by

C(x, t) =&[1(x,t) —&1)][1(O,O) —&1)]),

its spatial Fourier transform will be denoted by C(q, t).
This function contains two length scales, g~ and gi. The
roughness g& ——[C(x=0,0)]' gives the amplitude of
typical membrane humps; the longitudinal extension of
these humps is set by the parallel correlation length
(~~=[(rc/T)C(q =0,0)]' . We always measured g& and
((Vl) ), and estimated gi from g~~/a =exp[2tr(ir/T)
&&((Vl) )] since scaling implies g~~ = Bi(~~ for large g~~. In
part of our runs, we also measured the whole function
C(x, t=0), and thus determined g~~ directly. Inspection
of C(x, O) for diff'erent values of N shows that finite-size
effects are negligible as long as gi N/10. All data re-
ported here belong to this regime.

The time evolution generated by the Metropolis algo-
rithm has the same scaling properties as the Langevin
dynamics for a nonconserved order parameter which is
defined by

It will be convenient to use the dimensionless variables
z; =—(ir/T) 't'1;/a and Bl/Bt = D[ —x. V 1+BV/61]+—f, (7)

P[z;]/T =g [ —,
' (Vdz;) +U(z;)],

with

U(z;) —=a V((T/ir) 't az;)/T.

As usual, the statistical weight for [1;] or [z;] is given by
the Boltzmann factor exp( —iY/T).

Note that the discrete variables l; and z; must not be
regarded as the coordinates for the molecules (or mass
points) of the membranes. Instead, these variables give

where D is a kinetic coefficient and f is a random white
noise. A similar equation has been studied in the context
of wetting, and the results have been confirmed by MC
simulations for one-dimensional interfaces. The argu-
ments of Ref. 8 can also be applied to (7). One then
finds for general V(l) that the relaxation time,

tR =Jr dt tC(q =O, t) dt C(q =O, t) (8)

behaves as tR = t„(gi/a) ' for large g~~ with z =4.
Time-dependent quantities such as C(q =O, t) are, in
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FIG. 2. Phase diagram for the interaction defined by Eqs.
(2) and (6) with w=a 8'/T and zo =(x/T) ' lp/a.

FIG. 1. Critical behavior for the interaction defined by Eqs.
(1) and (6). The straight lines have slope y'= —,

'
.

general, more dificult to determine and have a larger
statistical error than static quantities. Thus, our mea-
surements of the relaxation time tR yield only relatively
rough estimates for its prefactor t„(see below). It
would also be desirable to study nonequilibrium proper-
ties such as the time evolution of membrane shapes or
the (un)binding (or adhesion) dynamics in more detail, '

but this requires even longer MC runs than used here.
First, consider the effective Hamiltonian (4) with the

harmonic interaction V(l) =
2 G(l —lp) . Then, the re-

duced interaction (6) is U(z) = —,
' g(z —zp) with

g —=Ga /x. For this model, C(q, O) = T/(tcq +G) for
small q. It then follows that g~~

= ag ', and that
C(x,O) is nonmonotonic as a function of x since
[VqC(q, 0)]~=p=O. For a finite lattice size N, C(x,0)
can be easily calculated by performing a sum over the
first Brillouin zone. In this way, we found that C(0,0) is
also nonmonotonic as a function of N. These properties
have all been confirmed in our simulations. In addition,
the relaxation time tR in (8) was found to scale as
tR = t,, (g~~/ )awith t„=40~4 MC steps.

For the interaction V(l) =Pl as given by (I), or the
corresponding reduced interaction U(z) =pz with p
=a P/(TIc) 't, the membranes unbind at P —p =0, i.e.,
at T, =~. In Fig. 1, we display the behavior of the
mean separation l —(z), the roughness g~ —(z ),'t, and
the length scale g~~/a =exp[2tt(tc/T)((Vl) )]. The paral-
lel correlation length satisfies g ~~

= g~~/B ~~
with B

~~

=5 ~0.3. As shown in Fig. 1, all three length scales
have the critical behavior l —g~-g~~ —I/P~, with
y'=

3 as predicted theoretically. The growth of the
time scale tg was found to scale as tR = t„(g~~/a)—1/P t', and t„=50+ 10 MC steps.

Now, let us discuss the square-well interaction as
defined ih (2), which leads to the reduced inter-
action U(z) = —w = —a W/ T for 0 & z & zp with zp
=(K/T) 't lp/a. This model has a line of continuous un-
binding transitions, w =w„(zp ), as shown in Fig. 2.
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FIG. 3. Critical behavior at the unbinding transition for
z0=0.075 and w„(zo ) =1.48. The straight lines have slope

y =1.

The membranes are bound and unbound for w & w, and
w (w„respectively. Each critical point was obtained
by varying w for fixed zo and by estimating the intersec-
tion of the graph of 1/[(z) —zp/2] with the w axis.

The parameters w and zo strongly depend on the
small-scale cutoff: w —a and zo —a . For a~ 0, di-
mensional analysis implies that the phase boundary is

given by W/ T„=c+ T„/zip. Thus, . the critical locus
w =w„(zp ) as displayed in Fig. 2 has the finite slope
Bw/tlzp =c~ at zp =0. Extrapolation of our data in-
dicates c+ =0.2 ~0.1. Since w, ~ c+zo, the unbinding
temperature T„(a) satisfies c~T„(a)~ tclpW, where the
equality holds for a =0.

As an example, consider two lipid bilayers with bend-
ing rigidities x] =K2=2K =10 ' J as appropriate for
DGDG membranes, and assume that they interact via a
square-well interaction as in (2) with strength W =
(10 ' I)/lM and range lp=lM/10, where lM is the
membrane thickness. For each choice of a, the variation
of T leads to a hyperbolic trajectory, w =(a W/xlp)/
zp, in the (w, zp ) phase diagram. From the intersec-
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tion of three such trajectories with the critical locus, we

find T, =0.7T„, , T„„,and 1.5T„„ for a=ll, 1.6lM,
and 2lM, respectively, with T„, =4.114x 10 ' J.
Thus, T„ is found to depend strongly on the choice of a.

The critical behavior of the length scales l, g&, and gt
at the unbinding transition is shown in Fig. 3 for zo
=0.075 and w, (zo ) =1.48. Furthermore, we find gt
=(~~/8~~ with 8~~=3+'0.3. The accessible range for
(w —w„)/w„ is rather limited due to the strong diver-

gence of the relaxation time tg, but the available data
are clearly consistent with l-g~ —

g~~
—1/(w —w„) ~ and

@=1 as predicted theoretically. The same exponent ap-
plies to all other values of zo. The growth of tg is con-
sistent with tR = t„((~~/a) and t„=150+50 MC steps.

In summary, our MC simulations provide clear evi-

dence for the existence of continuous unbinding transi-
tions of fluid membranes. The observed critical behavior
confirms the results of renormalization-group calcula-
tions. Furthermore, we find (i) that the unbinding tem-
perature T„depends strongly on the small-scale excita-
tions, and (ii) that relaxation times become very large
near the transition as follows from the form of the curva-
ture energy.

Property (i) implies that T„will be strongly affected

by the molecular structure of the membranes and, in

particular, by the presence of impurities or defects
within the bilayers. These will change the character of
the small-scale excitations and, thus, the eAective size of
the cutoff' a. Therefore, biological membranes which
operate at roughly constant temperature could employ a
small change in their microstructttre in order to go from
a bound to an unbound state. Property (ii) implies that
the unbinding dynamics is very slow for real membranes.
Indeed, the correlation time tR as obtained here should
represent a lower bound for the real correlation time
since the transport of water into the intermembrane
space can provide an additional bottleneck for the dy-
namics. '

Similar conclusions can be drawn from the recent ex-
periments of Helfrich and Mutz. The binding and un-

binding was found to proceed very slowly but without ap-
parent hysteresis. Furthermore, T„was found to be
reproducible for each sample but to vary strongly from
sample to sample. In fact, Helfrich and Mutz postulate
an additional microroughness of the membranes which
could arise from the formation of local saddles. If such a
microroughness is indeed present, it will strongly aA'ect

the value of T, but should not alter the critical ex-
ponents.

Computer simulations could, in general, be very useful
for the study of other membrane phenomena such as,
e.g. , the flickering and the shape transformations of
closed vesicles. '' However, in these latter problems, the
radius L of the vesicle plays the role of g~~. Thus, the re-
laxation time will grow as tR = t„(L/a), and equilibra-
tion can hardly be achieved by the usual MC procedure
as soon as L/a ~ 5. Therefore, new simulation codes are
required which greatly reduce the relaxation time.
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