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Nonlinear Behavior of the Reversed Field Pinch with Nonideal Boundary Conditions
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The effect of a resistive boundary and/or a distant conducting wall on a reversed field pinch is investi-

gated with a three-dimensional magnetohydrodynamics code. Fluctuations rise with increasing distance
between the conducting wall and the plasma. The enhanced fluctuation-induced vxb electric field pri-
marily opposes toroidal current; hence loop voltage must increase to sustain the current. This increases
the helicity injection rate, which is balanced by an enhanced surface loss.

PACS numbers: 52.65.+z, 52.35.Py, 52.55.Ez

Most reversed-field-pinch (RFP) theories and experi-
ments have, until recently, included a highly conducting
boundary near the plasma surface. Such a boundary
condition is necessary for linear magnetohydrodynamic
(MHD) stability, ' for the minimum energy "Taylor
state, " and perhaps for the "dynamo sustainment" of
the RFP. Deviation from this ideal condition is useful to
elucidate the essential physics ingredients of RFP sus-
tainment, and may be of practical necessity. Long pulse
experiments, such as the upcoming ZT-H (as well as a
controlled fusion reactor) will operate with a shell with a
magnetic field penetration time much shorter than the
plasma lifetime. This "thin shell problem ' is now being
experimentally studied in the OHTE, HBTX-1C, and
Reversatron devices. Of similar practical import is the
determination of the required proximity of the conduct-
ing wall to the plasma surface (" the distant-wall prob-
lem"). Experiments in HBTX-1B displayed anomalous
increase in the toroidal loop voltage with insertion of
limiters.

In this Letter, we computationally study the effect of a
nonideal boundary on nonlinear resistive MHD dynam-
ics. A 3D MHD code treats a plasma bounded by a thin
resistive shell at minor radius r=a, which is itself sur-
rounded by an outer perfectly conducting wall at
r=r„)a; a vacuum" region of width r„—a separates
the resistive shell and conducting wall. The thin-shell
problem and the distant-wall problem can both be stud-
ied by removing either the outer conductor or the resis-
tive shell. Similar physics dominates each case. (The
resistive shell presumably aAects only the time evolution,
not the final state. )

The code solves the full compressible MHD equations
for a force-free, cylindrical plasma, periodic in the z
direction (with periodicity 2trR). The resistivity varies
radially as ti =go[1+9(r/a) ],where tip is the charac-
teristic plasma resistivity. Viscosity and mass density
are spatially constant. The viscous term vV v is included
in the equation of motion principally for numerical sta-
bility; v, the ratio of the viscous damping time to the

resistive diffusion time rtt ( =a pp/rip), is set at 2.5. The
magnetic Lundquist number, S, is typically 6 x 10 . The
algorithm is finite diAerenced radially and pseudospec-
tral in the other two dimensions. We employ 3 modes
poloidally (poloidal mode number m =0 to 2), 43 modes
axially (axial mode number n= —21 to 21), 127 points
radially, and set R/a =2.5.

The boundary conditions at r=a are as follows. The
resistive shell, of thickness h, and resistivity gp, is
modeled by a jump condition on the perturbed radial
magnetic field b„'

Bb,/Bt =a/rs [Bb„/8r],
where [ ] denotes a jump across the shell (assumed to be
thin), and rs =haltp/tis is the shell penetration time.
The mean [(m, n) = (0,0) ] velocity is given by
Vs= V, =0 and V, =

i
E&&B i/8, where E and B are the

mean electric and magnetic fields. The nonsymmetric
velocity (m or n nonzero) vanishes at r =a, as appropri-
ate for a viscous plasma. We assume that the radial
current density also vanishes, as appropriate if the resis-
tive wall is insulated from the plasma (which is often the
case experimentally). Moreover, the magnetic shielding
properties of the resistive shell can be shown to be in-

dependent of the radial current density at the boundary.
The vacuum fields, between the resistive shell and con-
ducting wall, are calculated analytically and matched to
the plasma solution by Eq. (1). Linear benchmark com-
putations agree with analytic (inviscid) linear calcula-
tion, except that highly localized modes, and modes reso-
nant outside reversal, are damped in the computation.
The discrepancy is due to differences in viscosity, edge
resistivity, and velocity boundary condition. Initial equi-
librium (mean field) profiles and fluctuation (nonsym-
metric field) spectra are chosen to be that of an RFP
plasma with a close-fitting perfectly conducting wall.
This is generated by running the code with such a
boundary condition until a dynamo-sustained quasi
steady state is reached. The initial 6 is chosen to be
1.59, where 8 =Be(a)/(8, ) and ( ) denotes a volume
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FIG. 1. Parallel electric field profiles for the steady-state
close-fitting conducting wall case (0—1.59, F——0.08). The
electric fields are normalized to gJ~~ at r =0. The total electric
field, E]~, is composed of the Ohmic, gJ~~, and the fluctuation
induced Ef.
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average.
Most of our results can be understood from the paral-

lel component of the mean electric field E
~~

(=E B/~ B
~ ) and the fluctuation-induced electric field

Ef(= —(vb)e, . B/~ B ~, where ( )tt, denotes an average
over 8 and z). By Ohrn's law, Ei Ef=rIJi, —thus, E~~

and Ef determine JI~, which in turn determines the sta-
bility and the level of dynamo activity present in a
force-free RFP. The electric fields for the initial close-
fitting conducting wall state are described here for later
comparison with the nonideal boundary cases. Near a
steady state, VxE —0 and E is just the applied toroidal
electric field (constant with radius). From the radial
profiles of the fields, Fig. 1, we see that the applied E~~ is
of a shape to create a peaked k profile, and by itself
(without Ef) could not sustain a reversed field. (In
steady state, E

~~
in the reversed field region is J

~~

suppressing, and hence Ef must be nonzero to satisfy
Ohm's law. ) Thus, from linear theory, "

E~~ is destabiliz-
ing to the dynamo (m =1, n & 0) modes. The Ef, gen-
erated primarily by the dynamo modes, however, is in a
direction to flatten k by current suppression near the
center (positive part) and enhancement near the edge
(negative part). This field generates reversal and a more
stable profile (more shear). The mode saturation is a
balance between this quasilinear stabilization (as well as
nonlinear coupling to stable modes' ) and the destabili-
zation by the applied E~~~.

If the conducting wall is removed (to a radius of 10a)
to treat the thin-shell problem, the fluctuating magnetic
and kinetic energy increase by about 1 and 2 orders of
magnitude, respectively. They appear to reach a plateau
in about one shell time for zg =0.1zg, as shown in Fig.
2(a). The 8 value is held constant at 1.59. The n spec-
trum of m=1 fluctuations remains similar to the initial
state, peaking at n &0 [Fig. 2(b)]. The loop voltage,
Fig. 2(a), also increases with time, but develops giant ex-
cursions near the end of the computation (at t —1.2zs ).
This is not surprising in view of the parallel electric field
profiles shown in Fig. 3. The Ef component is now about
7 times the resistive term (tlJi). Thus, modest variations
in v or b can induce large current changes unless VI. ad-
justs accordingly. To balance the current suppression of
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Ef, Vl is now highly anomalous.
The dynamo modes, from quasilinear effects, are more

strongly afI'ected by the boundary than the linear theory
implication (see Ref. 11 for the linear results). This is
due to the enhanced Ef that primarily has Ef)0. The
enhanced E~~ mainly balances the positive portion of Ef
over most of the minor radius, leaving the J~~ profile rela-
tively unchanged. The edge current drive of Ef deepens
reversal, so that the reversal parameter F [=B,(a)/(B, )]
evolves from —0.08 to —0.15. The overall increase in
shear due to the primarily positive Ef, however, is not
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FIG. 3. Parallel electric field profiles at t=0.9' for the
constant 8 simulation with a thin shell, and (inset) the contri-
butions to Ef from different bands.

FIG. 2. Constant 0 evolution (initialized with a close-fitting
conducting wall steady state) with a thin shell: (a) total radial
magnetic energy [W =f0.5(b, /Bo) d (r/a), where Bo is the
characteristic field strength], total kinetic energy (Wz, same
units as W ), and loop voltage [Vt. =(2trR/a)E, (r =a), where
E, is normalized to tiJi at r=t =0] vs time; (b) comparison of
m =1 magnetic energy spectra at t~o different times.
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FIG. 4. Vl vs vacuum region thickness for the constant 0
and ~g =0.Olid case.

sufficient to compensate for the loss of the conducting
wall. Thus, the m =1, n & 0 modes could not easily rees-
tablish a new balance and saturate at a moderately in-
creased amplitude. Hypothetically, if instability growth
increases Ef only in the outer region where it drives J~~,

Vq would not be enhanced, and the growing I=1,n & 0
modes can easily self-stabilize by the shear they generate
(with sufficient shear, equilibria at 6 =1.59 can be stable
to m =1,n (0 modes even without a conducting wall).
This idealized Ef profile may even lower VL, since J~i in
the outer region contains a positive toroidal component
as well.

To distinguish the eAects of various modes, in Fig. 3
(inset) we plot the contribution to Ef of different spec-
tral bands. The m =0 contribution is mainly in a direc-
tion to suppress J~~ in the periphery; thus, m =0 modes
(which also grow to large amplitude) are quasilinearly
destabilizing to rn =1 modes. However, the overall efI'ect

of I=O modes is stabilizing; removal of m=O modes
yields a twentyfold increase in VL. Thus, nonlinear
mode coupling is probably the dominant stabilizing
inAuence. The n spectrum of the m = 1 modes is
broadened by the m=0 presence. The broadened spec-
trum more efficiently cascades energy to small scale,
stable, dissipative modes. ' Contributions to Ef from
modes other then the dynamo and m=O modes are
weak.

We generally do not observe large m =1, n )0 exter-
nal kinks, as we expected from linear theory. However,
preliminary runs at higher 8 and deeper reversal indi-
cate larger n) 0 kinks. Single helicity runs show that
these modes also suppress J~~.

'

When the conducting wall is placed closer to the plas-

Vl@, = gJ Bd r+ gj bd r — gb ds.
~J S

(2)

In our model, the surface potential is caused by obstruc-
tion of current Aow by the resistive shell which is
penetrated by the perturbed magnetic Aux. Surface
charges accumulate (producing the surface potential) to
keep j, =0 on the plasma surface while maintaining con-
tinuity of es and e, . Using Eq. (2), Jarboe and Alper
proposed that if the insertion of limiters lead to an in-
crease in helicity dissipation in the plasma (particularly
in the edge region), VI must rise to maintain helicity bal-
ance. ' In addition, Tsui proposed that enhanced surface
helicity loss, which he calculated from kinetic sheath
eAects for an inserted limiter, also implies an enhanced
VL. '5 Our evaluation of the terms appearing in Eq. (2)

ma boundary to treat the distant-wall problem, the Auc-

tuations and Vl saturate at lower amplitude in the con-
stant B simulations. To track the dependence of VL on
the wall position, r„,we expand the wall slowly during
one run. The total electric field is nearly curl-free during
the simulation; thus the plasma maintains a quasi steady
state. Individual modal behavior for the dominant
modes is also relatively quiescent, i.e., r)/rit —0. Hence,
the boundary condition, Eq. (1), is independent of rg,
and this case is relevant to the experimental situation of
a plasma separated from the wall by limiters. From Fig.
4 (ran =0.01 for the case shown, but the z~ =0.002 and
0. 1 cases behave similarly), we see that VL rises with r,
increasing dramatically beyond r —1.33a, at which
point oscillations in Vl begin. At higher B values the
rise in Vz is more dramatic. At 0=1.73, VL rises by
50% as r„increases from a to 1.05a.

It is instructive to interpret our results in terms of con-
servation of magnetic helicity. The requirement of heli-
city balance in steady state has been used to model
anomalous VL in experiments with limiter insertion. ' '
Here, we evaluate quantitatively the terms in the helicity
balance equation. We thereby identify the enhanced hel-
icity loss channel associated with the Vz increase.

Generally, helicity balance in steady state requires the
injected helicity (Vz&, ) to balance the plasma dissipa-
tion (fgJ Bd r+ ftU bd r), and surface losses'
( —fsgb ds, where g is the electrostatic surface poten-
tial), i.e.,

TABLE I. Evaluation of the terms appearing in the helicity balance equation [Eq. (2)] for
diA'erent distant wall cases in dimensionless units (for relative comparison only).

0, % vacuum

1.592, 0%
1.592, 15%
1.592, 45%
1.73, 0%
1.73, 5%

VL+,

24.5
32.9
43 ~ 6
32.7
48.2

Jtr)J Bd'r

24.9
25. 1

25.5
33.7
37

Jtgj bd'r

0.5
1.4
2.6
0.8
2.7

—Jt gb ds

0
6.2

13.1

0
6.2
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for various distant-wall cases are listed in Table I, which
shows that the resistive helicity dissipation in the plasma
increases negligibly with enhanced Auctuations (compar-
ing cases with the same B but different vacuum region
width). In addition, the edge region does not dissipate
helicity at a disproportionate level compared with the
bulk Aasma (not shown). The increased helicity input is
lost through the surface term, as suggested by Tsui.
With our model, however, we obtain a self-consistent
treatment, which includes Ef as the mechanism causing
the rise in Vl. The vacuum region is destabilizing, and
current flow is interrupted when the perturbed magnetic
field enters a vacuum region, leading to surface helicity
loss. Thus, vacuum-induced instability implies surface
helicity leakage and vice versa. The instability both
enhances the helicity input by raising VL (through EI),
and enhances the surface helicity leakage.

In conclusion, the conducting wall is a key element in

the MHD dynamics of the RFP. It is well known that
with a close-fitting conducting wall the internally reso-
nant m=1 modes, through their vxb eff'ect, drive cur-
rent in the edge to sustain reversal; also, when combined
with current suppression at the center, the eff'ect is to
Aatten the l(=j/B) profile, which allows the modes to
self-stabilize. This fluctuation-induced electric field,
along with nonlinear stabilization via mode coupling, is
balanced by the applied electric field which has the des-
tabilizing effect of peaking X. Removal of the wall dis-
turbs this balance; the m=1 modes grow, suppress the
central current, and thereby require an enhanced loop
voltage to maintain the current. The increase in the v x b
electric field, combined with the rising VL, produces little
increase in shear for self-stabilization of the m = 1

modes. Thus, rn =1 modes and VL grow to a large am-
plitude. The enhanced helicity input is lost through the
surface from fluctuation-induced surface potentials.
These effects occur with either a resistive or distant
boundary. The anomalous loop voltage present in some
RFP experiments with limiter insertion may result from
such MHD effects. Interestingly, the conducting wall
serves the useful purpose of preventing the dynamo
modes from becoming too robust.

The utility of this MHD computation is to depict key
physical mechanisms that influence the plasma as the
boundary is varied. A comprehensive picture, even
within MHD, will require inclusion of other important
effects, such as equilibrium rotation, plasma pressure,
higher-S values, different pinch parameters, etc. MHD
computation can also examine the possibility of alterna-
tive stabilization schemes, such as feedback stabilization
through electrical means at the boundary.
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