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Mode Competition and Control in Free-Electron-Laser Oscillators
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The problem of longitudinal-mode competition in free-electron lasers is addressed. It is shown that for
small enough ratios of the current to the output coupling coef5cient many single-mode states are possi-
ble. However, the time required to reach these states becomes extremely long for typical devices. Before
reaching a single-mode state the radiation field becomes relatively constant in amplitude with modula-
tions of its phase. Finally, a simple method for reaching the stable single-mode state with maximum
e%ciency is suggested.

PACS numbers: 42.55.Tb

ao =co T (2)

where m, is the synchrotron frequency for a particle at

One of the most important problems in the operation
of high-power generators of coherent radiation is the
competition of the many eigenmodes of the resonator for
the beam energy. ' This paper addresses the efI'ect of
multimode interaction on the operation of a free-
electron-laser (FEL) oscillator fed by a continuous elec-
tron beam. ' Our principal results are a determination of
the circumstances under which single-mode operation
can be achieved and a description of a method of control-
ling the detuning of the final mode. In addition, we
present a description of the process by which single-
model operation results during the transient start-up
phase of the oscillator.

The model we consider is the simplest one which re-
tains the eA'ects of mode competition; namely, the one-
dimensional, low-gain oscillator. In this model the radi-
ation field in the resonator can be expressed as a super-
position of empty cavity modes whose amplitudes and
phases change slowly in time (compared with the transit
time of the electrons through the interaction region) due
to their interaction with the beam. We further assume
that the electrons' energies change only slightly on tran-
siting the device. This allows us to use a pendulum
equation to describe the particle motion in the pondero-
motive potential well of the beat wave.

With these approximations the characteristics of the
operation of an oscillator in a single mode are deter-
mined by two parameters: The first is the normalized
detuning

p;„„=[(k + k )v;,„—to] T,
where k and k are the wiggler and radiation wave num-
bers, v;„j is the value of the axial velocity of the electron
beam (here assumed to be monoenergetic) as it enters
the interaction region, co is the frequency of the radia-
tion, and T=L/v;„, is the transit time of the particles
through the interaction region whose length is L.

The second parameter measures the strength of the ra-
diation field and is given by

Pinj, n Pinj, O

where p;„j o is the detuning for the n =0 mode and

(3)

Ug —1
Lc Uinj

(4)

is the slippage parameter which is usually small. The
number of modes N which will compete for the beam's
energy can be estimated by determining the number of
modes with detunings under the positive portion of the
gain function G, N —t

We can now simulate the competition of many modes
by the following procedure. ' Because of the low gain
and correspondingly small losses, the radiation field in
the resonator can be represented as a superposition of
cavity modes with amplitudes and phases which evolve
slowly due to their interaction with the particles. The

the bottom of the ponderomotive potential well. As
mentioned, these two parameters determine the charac-
teristics of an oscillator operating in a single mode. For
example, the dimensionless e%ciency hp in the small-
signal limit is given by dp =aoG(p;„, ), where G(p;„„)
=p;» [1 —cosp;„„—(p;„,/2) sinp;„, I is the gain function
whose maximum value 0.069 occurs at a detuning
p;„j=2.606. In the nonlinear regime the dimensionless
efticiency maximizes at a value 5.5 when p;„j=5.14 and
a0=18.0 corresponding to the situation where particles
execute approximately half a bounce in the ponderomo-
tive well.

The preceding discussion is based on the assumption of
single-mode operation with a specified frequency co and
wave number k such that the detuning p;„j is determined.
In a low-gain oscillator the frequency and wave number
must correspond approximately to a cavity mode. These
are determined by quantizing the axial wave number
k„=ko+nn/L, and co„=coo+ntrv~/L„where n =0, ~ 1,
~2 labels the mode, mo and ko are the frequency and
wave number of some arbitrarily chosen reference mode,
vg is the axial group velocity of the radiation, L, is the
cavity length, and we have assumed uniform spacing of
modes. Thus, for a given injection velocity each mode
has its own detuning parameter defined by Eq. (1),
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field amplitude and phase at any point will be nearly
periodic in time with a period equal to the round-trip
travel time of radiation in the cavity, which we assume to
be much smaller than the time scale over which the am-
plitudes change. We may then numerically integrate the
pendulum equation for an ensemble of particles with
beat-wave phase y and entrance time to uniformly distri-
buted over the intervals [0,2x] and [0,2], respectively, so
that

dp d
dg'

=Im ga„expji[y —nx(eg+ro)]], (5)

where g =z/L measures distance through the interaction
region, y=(k„+ko)z —root is the particle's phase, p is
proportional to the energy deviation of the particle,
p (g) = [(kp+ k )U, (g) —coo] T with p(g =0) =p;„, o, and
we have normalized to such that radiation travels the
length of the resonator in one unit of time.

The quantity a„ is the complex amplitude of the nth
mode normalized in the same way as ao, and it depends
on a slow time variable ~, normalized to the decay time
of radiation in the empty cavity. Thus the field at the
entrance to the interaction region has the multiple time-
scale representation a (r„to) =g„a„(r,) exp( —inert o)
The evolution of a„ is described by the equation

+ —a„(r,)1

dT, 2

iI f'2 d~o
J d&(exp[ —i [y nor(m)+—to)]]), (6)

4v ~0

where I is a normalized current, 2U is the fraction of ra-
diation power extracted (including losses) per pass, and
the angular average representing the projection of the
beam current on the nth mode is over initial entrance
phases of the particles. In this model we have assumed
that all cavity modes have the same damping rate, which
in normalized units is 2 .

The previously discussed single-mode theory is ob-
tained from this model by including only the n =0 mode.
One then obtains from the particle equations the average
energy extraction Ap =p;„, o

—(p(g=1)) and from the
wave equation, or equivalently from energy balance, the
current needed to maintain the mode in steady state.
This information is displayed in Fig. 1 where level curves
of energy extraction Ap (solid curves) and beam current
(dashed curves) are plotted in the (ao,p;„„o) plane. In
the plot, beam current is normalized to the minimum
value required to start oscillations in the cavity,
g =I/I, t„, where I,t„t =2v/G(2. 606) =29v.

The stability of single-mode equilibria to the growth of
side bands was determined for the given model [Eqs. (5)
and (6)] in Ref. 7. The result is shown in Fig. l.
Single-frequency equilibria are stable within the
triangular-shaped region of the (ao,p;„,) plane. The pro-
cedure used in Ref. 7 was to assume a single-frequency
equilibrium was present (ao,p;„„)which was linearly per-

/x= i

2—
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a.
FIG. 1. Solid lines are the equal energy extraction (Ap)

curves in the (p;,„,ao) plane. The curve labeled 1 corresponds
to Ap =0, the curve 2 corresponds to dp =5.5. The diAerence
between the neighboring level curves is 0.5. The dashed lines
are the level curves of I/v, which is obtained from the energy
balance at a particular value of ao and p;„„.. The numbers on
the curve indicate the value of @=1/I„„, Only inside o.f the
triangular-shaped region is the stable single-mode operation
possible.

turbed by small-amplitude satellites a„(nc0). Satel-
lites with equal values of

~
n

~
couple linearly, yielding a

quadratic dispersion relation for growth rate as a func-
tion of satellite mode number. The coefficients in the
dispersion relation were determined numerically by in-
tegrating particle orbits, and the parameter values for
which all satellites were stable were recorded. The par-
ticular plot ion Fig. 1 is for e =0.2. For smaller values of
e the plot would appear essentially the same except that
the band of stable p;„, values at ao =0 would shrink to a
point centered at p;„„=2.606.

A number of important points are to be learned by ex-
amining Fig. 1. The first is that the single-mode equilib-
rium with maximum efficiency occurring for p;„„=5.14
and ao =18 is not stable. One would expect to reach this
equilibrium by setting the current ratio @=I/I,t t to 4.
The results of simulations show instead that the system
settles to a single-mode equilibrium with p;„;=2.6 and
a0=14, which is just inside the stable region with @=4.
(Simulations show for higher values of current no stable
single-mode equilibria are possible due to the excitation
of the side-band instability. ) The second point is that
if one now considers stable single-mode equilibria, the
maximum efficiency is achieved for an equilibrium with
a 0 1 5 2 p &flj 5 and g —3. However, with g =3 there
is a range of values of p;„; falling in the stable triangle.
Thus, if e is small there are many different stable single-
mode equilibria corresponding to the different detunings
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of the many possible cavity modes [cf. Eq. (3)] in this
range. Therefore, the question arises as to which single-
mode equilibrium state the system will evolve.

To answer this question we have turned to a numerical
simulation of Eqs. (5)-(7). A small noise source term'
was added to provide a "seed" signal for each mode.
Further, to simulate the efI'ect of the time dependence of
the voltage pulse in our model we allow P' j 0 to become
a function of the slow time variable ~, . Because the FEL
resonance is narrow only the last few percent of the volt-
age rise, corresponding to values of pinj of order z, affect
the final mode. (The interaction is less sensitive to small
changes in current so we fix its value. ) We thus take as
a model for p;„, p(z, ) a hyperbola characterized by the
parameters pf, p„p~, and r,

[p;.„,p(z, ) —pf —p, (z, —z,„)][p;„,p(z, ) —pf] =p,' .

The time dependence is such that p;„j 0 increases initially
linearly with time at a rate p, and makes a transition at
about r, = i, to a constant value pf. The abruptness of
the transition is controlled by the parameter p+.

The time history of the energy extracted as well as the
spectrum of mode amplitudes at i, =60 and the fast
time dependence of the output power (averaged over a
wave period) at z, =60 are shown in Fig. 2 for a sample
run. The parameters for this simulation are a=0.05,
p+ =4.5, p, = 1, and i, =20. As can be seen, the
energy-extracted hp saturates in about 25 cavity decay
times, after T;, =T:, . However, the spectrum at satura-
tion is still rather broad (eleven modes FWHM which
corresponds to half the gain bandwidth N=e '). Con-
tinuation of the simulation shows it will eventually settle
to a single mode with p;„j=4.2 after a large number of
cavity decay times.

The detuning of the final mode is controlled by the
time dependence of the voltage pulse [p;„„p(z,)]. As a
result of many other simulations we have performed, we
conclude that the mode which becomes dominant is the
mode for which the rate of change of p;„j has become
small enough while p;„j „ is in the range corresponding to
maximum linear growth, plnj p 2.606, to allow for
significant growth of the mode. This mode then becomes
large enough to suppress its neighbors and remains dom-
inant while p;„j „ increases to its final value resulting in

high e%ciency. If the voltage rise is instantaneous, the
mode with maximum linear gain P;„„=2.606 dominates.
If the rate of approach to the final voltage is too slow,
the dominant mode is carried to values of p;„j outside
(above) the triangle of stable operation. Then a lower
frequency satellite of this mode becomes unstable and
grows, eventually becoming the dominant mode. The re-
sult is that the final state is still a single mode with a
value of p;„j „just inside the stability boundary. For-
tunately, this state has quite high e%ciency; hp=5. 0
compared with the value realized in the "instant turn
on" case Ap =3.4.

The time required to reach single-mode equilibrium
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can be estimated using the same satellite stability calcu-
lations of Ref. 7 which produced Fig. 1. There it was
shown that the damping rate (in inverse cavity decay
times) of the neighboring satellites scales as (ne)
Thus, the number M of satellites present after a time ~,
is approximately M=(e z, ) ' . The continuation of
our simulation roughly confirms this scaling. Reexpress-
ing this estimate as a real time (t) dependent spectral
width gives Arp/rp=0. 5N„'(td/t) 't, where N„ is the
number of wiggle periods, td is the decay time of radia-
tion in the empty cavity, and t » td and v~ =c are as-
sumed.

I.IG. 2. Sample of a multimode simulation with 81 modes,
E =0.05, g =3, and the voltage tapering parameters pf =4.8,
p, = l, z, =20, and p+ =4.5. (a) The time history of Ap, (h)
spectrum at z, =60, and (c) fast time t p dependence of

~
a(z„,to)

~
at g =0 and z, =60. The dashed line is the same

quantity but averaged over time period 0.5.
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The long-lived, weakly damped satellites were shown
to correspond to perturbations in the phase and not the
magnitude of the radiation field. " Thus, the plot of the
fast time to dependence of the output power [solid curve
in Fig. 2(c)] shows only a small amount of interference
in spite of the broad spectrum. The small high-
frequency oscillations visible in Fig. 2(c) come from a
transient excitation of the side-band instability. These
modes are visible on the spectrum plot at n = —30 to
—35.

The results of our simulation can be extrapolated in

the following way to model the observations of Ref. 12
where the fractional gain bandwidth is 0.3%, the cavity
decay time based on 12% per pass power loss is 0.4 @sec,
and single-mode operation was claimed. Our simulation
predicts a spectral width in the experiment of Aco/tu

-0.15% (half the gain bandwidth). This number is

small enough to be masked by the limited resolution of
the Fabrey-Perot interferometer and the reported 0.1%
shot-to-shot variation in beam energy. The strongest ex-
perimental evidence advanced supporting single-mode
operation ' was the relative constancy of a fast diode sig-
nal measuring the output power. However, our simula-
tion shows that many modes can be present and still give
a constant output signal. This is illustrated in Fig. 2(c)
(dashed line) where we have averaged the fast time sig-
nal over a time period corresponding to the response time
of the fast diode. Thus, we do not believe a single-mode
equilibrium was established in the experiment.

In conclusion, we have demonstrated the conditions
under which a free-running FEL oscillator will operate
in a single mode. In general, the time to reach such a
state is extremely long unless some method of external
mode control is applied.
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