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Chiral Quantum Baryon
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We show that a classical soliton for the nonlinear SU(2) cr model in the hedgehog configuration ad-
mits a stable solution, when quantized through collective coordinates, which may be identified with the
nucleon. The whole approach depends on a single, dimensional, and arbitrary constant. Numerical re-
sults seem to converge for the mass and for the right value of the weak axial-vector coupling.
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PACS numbers: 11.10.Lm, 11.30.Rd, 11.40.Fy

It is widely believed after the work of several authors, '

who revived the argument by Skyrme, that a baryon is a
soliton of a chiral theory. Classical stability arguments
seemed to require, however, the introduction of an addi-
tional term to the nonlinear cr mo-del Lagrangian (in the
nonrelativistic limit)

3
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where U is a unitary operator,

UU =1,
and f is the usual pion-decay constant. The additional
term introduced by Skyrme,

at low energies do not seem to depend on e.
Lately, we have addressed the question of the meaning

of a theory without a Skyrme term. In particular, we
have stressed the point that the classical Euler-Lagrange
equation for F(r) is singular and introduces a dimension-
al constant in the formalism. This constant carries, in
the classical domain, the instability of the nonlinear clas-
sical a-model soliton. It seems that former work over-
looked this constant. In fact, some feeling about it is
present in the work by Balachandran, who introduced a
kind of variational "shape" parameter, accounting for
the size of the soliton.

As we showed in Ref. 6, this constant appears natural-
ly when one sets out to solve the classical equation of
motion for the Lagrangian (I) using the hedgehog
SU(2) solution (3):

incorporated a dimensional parameter e. Several works
dealt with the phenomenology of this classically stable
theory, and showed, after quantization, a reasonable
agreement for physical quantities when the hedgehog
form for U was used (spherically symmetric Ansatz):

Up =exp[i r nF(r)], (3)

where rk represent the usual Pauli matrices for SU(2)
and

d2F(r)/dr + (2/r) [dF(r)/dr] =sin2F(r) .

To eliminate the first derivative, one uses

F(r) =g(r)/r
and, calling

r =2x,
we arrive finally at

d'g( )x/d 'x= (2/x)sin [@(x)/x] .

(7)

(9)

k=1
k)2

n=r//rf,

(s)

It is easy to verify that for the second derivative we ar-
rive at an identity, and so it remains a free, dimensional,
parameter. In order to solve (9), we must require, for
consistency of both sides,

There are several points which deserve further atten-
tion. First, it is usually assumed that the eA'ective chiral
Lagrangian should result from some more fundamental
theory, for instance, from a gauge theory such as QCD,
and it is not easy to see how to generate from it a term
like (2). Second, it is not obvious how to ascribe a physi-
cal meaning to the new dimensional constant in the
game, e. Some recent work attempts to relate it to the
pion-decay constant f . Third, using the full Skyrme
Lagrangian leads to numerically encouraging results, but
the formal results for the description of chiral dynamics

g(o) =o,
g'(0) =0, ~ 2ntr, n = i, 2, . . .

To have a soliton solution with winding number n, ,

F(0) = n~, —

g'(0) = —2ntr,

(io)

(i2)

g(x) = —2nttx+ —,
' g"(0)x '4'([g" (0)x] '), (i4)

provided F(r) is zero at infinity, and we have at the end
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where

~( ) gf 2(n —i)
n=]

g"(0) =d'g(x)/dx'i =p,

(is)

(16)

in Eq. (18), translates into the instability under a varia-
tion of g"(0).

It is well known, though, that when quantizing with

the help of collective coordinates

U(r, t) =A(t)Up(r)A (t)
and s =g"(0)x is a dimensionless variable. The first
coefficients in the expansion of 2 (s) are =cosF(r)+iz, D,I, (t)nk sinF(r), (2i)
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The appearance of the dimensional parameter g"(0)
for the solution of the soliton has not been noticed by the
authors of previous work. It seems, however, as we men-
tioned earlier, that Balachandran and co-workers' were
somewhat aware of its necessity when they introduced a
variational ad hoc shape parameter. Besides, notice that
this parameter should even be included with the Skyrme
term [Eq. (2)], since it does not contribute to the singu-
larity at the origin.

lt turns out that the chiral angle itself, F(r), is in fact
a function of the dimensionless variable s, as seen replac-
ing (14) in (7):

F(r) =F(s) = —nor+ —sA(s) . (i 7)

This new dimensional parameter, which, we stress, comes
from the consistency of the series solution at the origin
for the chiral angle, is intimately connected to the usual
stability argument against the soliton solution for the
nonlinear a-model Lagrangian. If we write the expres-
sion for the mass of the soliton,

where Dii, (t) are rotation matrices, the expression for
the energy of the quantized system becomes the one for a
rotating top (see, for instance, Balachandran or Adkins,

Nappi, and Witten ),

M =Mp+ (2k) ' J (22)

where the "momentum of inertia, "k, is

", f t dr—'r' sin F(r') .

Using Eq. (17),
P OO

t=2tzf ds' —", s' sin [ —,
' 7(s')1 .

&"(0)'"'
With this, Eq. (22) takes the form

M=[2trf /g"(0)]a+ —,
' [g"(0) /2' b]J

(23)

(24)

(25)

The quantization for the symmetric top as a fermion
shows that the possible values for J (and for the isotopic
spin T =J ) are half-integer.

It is easily seen that Eq. (25) has a minimum in terms
of g"(0). The only remaining fixed scale parameter in

Eq. (25) is f, the pion-decay constant. The values for
g"(0) and the mass at the minimum are

' 1/4

(26)~"(0) = —— ab
2 (2')'
3 J2

- ]/4

M= ——(2~) J4 3, 2a'
3 2 b

(27)

We have immediately a prediction for the mass ratio of
the lowest states:

Mp=4trf J dr'[r' (dF/dr') +2sin F(r')],
in terms of Eq. (17) above, we find

(18)
M(J= p )/M(J= —,

' ) =5't =1.495. . .

which agrees rather well with the known experimental
ratio for the h. resonance and the nucleon:

f+ OG

Mp=2~f' „ds'[—,
' s' V' (s')+8sin [ —,

' V(s')]],x" o
M(~)/M(W) = i.32. . . . (29)

putting

9(s) =sA'(s) (20)

with P'(s) being its first derivative. The integral over
the dimensionless variable s' in Eq. (19) is a pure num-
ber, and the usual argument for the instability of the sol-
iton, coming from the replacement

r' A.r'

It may seem that we have lost any trace of the value of
the "baryon number, " or winding number, as it appears
in the first term of Eq. (17). This is not the case, since
asymptotically the expression for X(s) is well deter-
mined.

In order to see this, let us go back to the solution for
the chiral angle at infinity, looking for the solution of Eq.
(6). Introducing y =1/x, using Eqs. (7) and (8), and
defining

g(x) =p(y) K(y) =yy(y),
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we arrive readily at

K"(y) =(2/y')sinK(y), (30)

[5,4], [7,6], . . . . For instance, [3,2] for X(s) uses the
first coefficient only, and is particularly simple:

with the relation X[3,2] (s) = ([+s/4x) [1+s/4~+ (s/4') '] (37)

F(x) = —,
' K(y) .

The series solution of Eq. (30) gives

K(y) =2n m+ —,
' K"(0)y'Y(y),

(31)

(32)

After determining the coefficients in the Pade approxi-
mant (36), we calculate the integrals a and b in (25) and
find the values of g"(0) and M. To have the axial-vector
coupling, we use the fact that the asymptotic form for
the Pade approximants is

with

I (y) = g k, [K"(0)y'] "~-"
j=l

K"(0) =d'K(y)/dy' I,=. ,

F(o) -ere) [N]cr' (cr-0),
with a =]/s and

c 1 [N] +(d/V —2/l4 n+ —'2/4~dN ) .

(3g)

(39)

F——K"(0)/r '. (33)

Comparing Eq. (33) with Eq. (17), we see that at
infinity

X(s)—+4nn/s+0(s ) . (34)

The behavior at infinity resulting from Eq. (32) allows
one to have information about the axial-vector current
coe%cient gz, as shown by Adkins, Nappi, and Witten,

g, = -,'2~f.'K"(0) .

We have begun to work out numerical results for the
SU(2) chiral theory. They are at the moment not com-
plete, but we think they deserve some consideration.

In order to exploit our knowledge of the solutions by
power-series expansion of Eqs. (9) and (30), we propose
a systematic approximation using Pade approximants.
They are in this case of a particular type, since we need
to enforce the conditions that fix the soliton solution to
be of winding number one. Defining

ni+n2a+n3a + +n~afNM a
1+dia+dqa + . . +dna

we find that the only approximants satisfying the condi-
tions

115 1
k) =1, k2= ——

6! 7 336 '

1 4 1 1k2= 2x3 x5= k3=—
11! 9280 ' 6209280

The winding number of the soliton is given by the
diA'erence

N=n —n

and so, if n = l, in order to have % =1, n must be zero.
The dimensional parameter g"(0) translates at infinity to
the dimensional parameter K"(0) [-—g"(0) ].
Then, as the radial coordinate grows to infinity,

The first results are given in Table I.
We see that the above results show a systematic trend,

and further work is currently being done, increasing the
order of the approximants (that is, using more informa-
tion about the soliton solution) and enlarging the flavor
group. The dimensional parameter g"(0) is rather large,
showing the importance of short-distance behavior. The
value for the mass is rather low, and seems to converge
to a value around 0.50 GeV for our chosen value for f .
Interestingly, the results for the axial-vector weak cou-
pling look nice, and may converge to the right value.

We think that the above results indicate that the
dynamical information available from low-energy ha-
dronic physics summarized in the current-algebra
effective Lagrangian given by Eq. (1) provides already a
consistent framework for description of the nucleon and
the lower baryon states after quantization. The need to
use a minimum of the quantum energy for a description
of baryons does not seem to be too extravagant. It arises
from the exact behavior of the hedgehog classica1 solu-
tion.

If, on the other hand, one expects to describe low-

energy hadron physics from a dynamical quantum theory
such as QCD through an effective Lagrangian, experi-
ence with two dimensions seems to indicate that quan-
tum (loop) effects are relevant.

One may also recall that the simple hydrogen atom is
classically unstable, and the crudest quantum condition
makes it into a stable, quantized system. The compar-
ison may look exagerated, but it is worth remembering
that the quantum system does not always follow the
paths suggested by classical dynamics.

TABLE I. Results of the first approximations. We have
taken f =0.067 GeV.

g"(0)/f g"(0) (GeV) M~/f M~ (GeV) g~

X[N, M](0) =1, N[N, M](ee) —4x/s+O(s ),
are those with N =2j + 1, M =2j, j=1,2, . . . , i.e., [3,2],

[3,2]
[s,4]
[7,6]

193.2
371.1

624. 1

13.00
24.87
41.82

9.964
8.693
8.166

0.6676
0.5824
0.5471

0.891
1.087
1.162
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Note added. —After this work was completed, we be-
came aware of the work of P. Jain, J. Schechter and R.
Sorkin [Phys. Rev. D. 39, 998 (1989)], who agree with
our general framework.
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