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We use the exact renormalization procedure, introduced by Machta [Phys. Rev. B 24, 5260 (1981)],
to evaluate the waiting time density for a walker jump to one of its nearest neighbors on a decimated lat-
tice, in terms of the original waiting time densities on the nondecimated lattice. We explicitly identify
all the fixed points and their corresponding domain of attraction for the one-dimensional case and for the

Sierpinsky gasket.

PACS numbers: 05.40.+j

A few years ago, Machta' introduced a nice, simple
renormalization procedure to study the properties of
nearest-neighbors random walks in one dimension.
Machta was concerned with the properties of random
walks with static disorder. More recently, the same pro-
cedure was also applied to investigate walks on a one-
dimensional quasiperiodic lattice.? The idea is to deci-
mate every other site on the 1D lattice, and to calculate
the waiting time density (or first-passage time density)
to go from a site to its “new” nearest neighbors. These
are the next-nearest neighbors on the original lattice. By
repeating n such decimations, one obtains first-passage
time densities from a given site to its nearest neighbors
which are, in fact, at a distance =% 2" on the original lat-
tice (lattice constant is 1). To obtain detailed informa-
tion on the form of this waiting time density as n—> oo,
one has to rescale time in a proper way. It will take a
certain factor A > 1 more time to get twice as far, and we
will therefore scale time down by this factor, at each
stage of the decimation. In this way, the waiting time
density approaches a scaling form, which we can identify
explicitly.

In this Letter, we will use this renormalization pro-
cedure for a symmetric nearest-neighbor random walk
with a waiting time density w(z) which is constant
throughout the lattice (and hence so- at every stage of the
decimation). We will investigate both the 1D lattice and
the Sierpinsky gasket. We will identify explicitly the
scaling value A, the fixed points of the renormalization

equation, and their corresponding domain of attraction.
This has to be contrasted with similar work on the
Green’s function, whose scaling form is still subject to
discussion. *

Consider first the 1D lattice. Let w(,)(¢) be the proba-
bility density that a walker, arriving at a site at =0, will
move at time ¢ to any one of its nearest neighbors on the
n-times decimated lattice. w(,)(¢) is also the first-
passage time density to go from a site to any one of the
sites at a distance 2" on the original lattice. Its La-
place transform reads

TRIOEY PR OPIS )

To derive the renormalization equation, we consider
w(0)(2), the waiting time density on the original lattice,
and calculate the waiting time density y()(z) to one of
the next-nearest neighbors. A given next-nearest neigh-
bor can be reached for the first time, and this without
passing at the other next-nearest neighbor, in a walk of
2N steps, N =1,2,.... The N —1 first pairs of steps may
be taken, starting from the original site, either to the
right and back or to the left and back. There are thus
2V~ different walks of length 2N. The probability for
such a walk to take a time exactly equal to ¢ is a convo-
lution of 2V factors y()(t;)/2, with Zz;=¢. In Laplace
transform terms, this convolution becomes a product
[W0)(s)/21%". We find thus that y)(s)/2 is the sum of
[y&)(s)/217"/2 for N going from one to infinity (the fac-
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tor 3 comes from the fact that we are looking at the
first-passage time to a given neighbor). This result is
valid at any stage of the decimation so that we conclude
[see also Egs. (3.3) and (3.4) in Ref. 1 with y=2p =2q1

T (8) =§a—1()/[2 = yt— 1) ()] (2

As was explained above, we are now going, after each
decimation, to scale time down by a factor A. The pre-
cise value of A will be determined later. Instead of con-
sidering w(,)(z), we are interested in y(,)(z/A)/A. Under
Laplace transformation, this corresponds to considering
() (sA) instead of (,)(s). The renormalization equa-
tion, including time rescaling, thus reads

T () =9ti— (s /M2 — i — 1) (s/M)] . (3)

The desire is that the successive waiting time densities
w(n) (s) converge, after a sufficient number of decima-
tions, to a limiting form (s), which is then obviously a
fixed point of the transformation (3). Let us first identi-
fy these fixed points. The fixed-point equation reads

¥(s) =g (s/2)/[2— 2 (s /D)1 4)
This relation can be very much simplified by setting
y(s) =1/cosh[g(s)]. (5)

One way to guess this transformation is to remember
that the Laplace transformed first-passage time density
F(s) to go from 0 to =* L by diffusion (Brownian motion
in 1D), with diffusion coefficient D, is given by

F(s)=1/cosh(L2%s/D)"?. (6)

One can also arrive at the transformation (5) in a
more systematic way, as will be illustrated below for the
Sierpinsky gasket. By introducing (5) into Eq. (4) we
find that

¢(s) =24(s/1). (7

Here, we have disregarded the possibility of an addition-
al multiple of *2xi and a different sign in the right-
hand side of Eq. (7), since these differences do not
change the final result for y=cosh(¢). The general
solution of the above equation is given by

¢(s) =A(s)sn¥/mr (¥)

The second factor in the right-hand side of (8) is a par-
ticular solution of (7), while

A(s)=A(s/1) =2 A,exp(2rinlns/In)) 9)

is a function, periodic in Ins with period InA, and can
hence be represented by its Fourier expansion.* This re-
sult, together with Eq. (5), specifies all the fixed points.
Let us now investigate their domain of attraction.

To do so, we again introduce the transformation (5)

W) (s) =1/coshld()(s)] a0

1422

and find that the renormalization equation (3) reduces to

6 (s) =2¢—1)(s/1) . (11)
By iteration, one concludes that
i (s) =2"¢)(s/A") . (12)

In the following, we will take A > 1 (the case A < 1 leads
to a trivial attractor). Hence, it is clear that the renor-
malized density is, in the limit n— oo and for every
finite value of s, determined by the behavior of the initial
density for s— 0. A large class of waiting time densities
are characterized by the following behavior for s— 0
(Ref. 5):

o) = 1-FAds", (13)

where Ap and 0 < a <1 are constants. These constants
are the only information on the initial waiting time den-
sity w(0)(z) that shows up in the asymptotic limit n—> oo,
Aoy fixes the time scale of the walk on the nondecimated
lattice. « is the fractal dimension in time* of the original
waiting time density w(o)(¢). In particular, for a waiting
time density () (¢) with fractal dimension equal to 1,
i.e., finite first moment 7, one has

l/7(o)(s)v=01—Ts, (14)

—

corresponding to a=1 and 43 =27. From Egs. (10)
and (13), it follows that the corresponding result for
do(s) is

F0)(s) =0Aos“/2. (15)

After a large number of iterations, one converges, ac-
cording to Egs. (12) and (15), to the following fixed
point:

§(s) = lim G(,)(s) = lim Ao(2/n972)yngal2 (16)

The scaling that leads to a nontrivial attractor is clearly
(see also Ref. 1)

AC=4. an

For a =1, the rescaling is by a factor 4, which is precise-
ly what one finds for a usual diffusion process: To go
twice as far, it takes 4 times as long. The resulting wait-
ing time densities are then, from Egs. (5), (16), and
(17), explicitly given by

w(s) =1/cosh(A4os*?) . (18)

Since, according to Eq. (17), a/2=In2/InA, these corre-
spond to the fixed points, identified in Egs. (8) and (9),
that do not “oscillate wildly” in the limit s — 0, i.e., the
only nonvanishing coefficient in Eq. (9) is 4. We also
note that for a scaling not satisfying Eq. (17), one con-
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verges to a trivial attractor, namely

o 0, s=0, .

nlemw(s)= 1, s=0, * <4, (19)
and

lim y(s)=1, A*>4. (20)

n— oo

The implementation of the above renormalization pro-
cedure to regular lattices in higher dimensions seems to
be difficult. One reason for this is that the nearest neigh-
bors do not isolate a given point from the rest of the lat-
tice, so that it is very difficult just to derive the renormal-
ization equation, let alone to solve it. But the procedure
can be applied to a fractal lattice, more precisely, to the
Sierpinsky gasket, as we now proceed to show. The
reason for the interest in this example is that its simple
structure allows for many detailed calculations (see Refs.
3 and 6 for recent reviews), while it is desired that its
fractal nature sheds some light on the behavior of more
complicated fractals, such as the percolating cluster.
The decimation procedure is the same as that used by
previous authors to calculate the spectrum’ ~? or the
Green’s function.'®'" For more details, see Fig. 1. The
derivation of the renormalization equation, analogous to
Eq. (3), is more complicated than for the 1D case, basi-
cally because a walker can make very complicated excur-
sions to its two neighboring triangles (0’1’2’ and 0"3'4" in
Fig. 1). We just quote the final result, which turns out
to be simple [compare with Eq. (3)]:

T (8) =9—1(s/M)/ 14— 39— (s/A)] . @

As in the 1D case, we have introduced a time-rescaling
factor A. The corresponding fixed-point equation reads

F(s) =y (s/0)/14=3y(s /)] . (22)

To solve these equations, one can make use of our experi-
ence with the 1D case. We set

w(s)=1/flp(s)] (23)

FIG. 1. Decimation on the Sierpinsky gasket. At each step
of the decimation, the smaller inner triangles (0'1'2" and
0"3'4") are removed.

so that Eq. (22) becomes
Slo()1=412p(s/M)]1—=3flo(s/M)] . (24)

In order to simplify this relation further, we look for an
analytic function f such that

4f%(x) —=3f(x) =f(ax), Vx. (25)

If such a function can be found (we will derive a Taylor
series for f, which also serves as a definition for the func-
tion of a complex argument), we obtain from Eq. (24)
that

o(s)=ap(s/r). (26)

This equation can be solved in the same way as Eq. (7).
Restricting ourselves to functions that are “well
behaved” at s =0, one finds from Eq. (26)

o(s) =1L Adshna/in @7

where Ao is an arbitrary constant [the prefactor in Eq.
(27) has been chosen such as to be consistent with the
definition of 4o through Eq. (13), see below]. The fur-
ther discussion proceeds along the same lines as for the
1D case.

Before proceeding with the results, we show that the
function f exists and is, in a certain sense, unique. From
Eq. (25), it follows that, if f exists and is not equal to the
trivial solution f(x) =0, then f(0)=1. If it has a first
derivative f'(0)=0 at x =0, it follows that a=5. We an-
ticipate now, on what is following, by noting that all the
higher derivatives, f“’(0) at x=0, are proportional to
[f/(0)]". The case f'(0)=0 leads then to the trivial
solution f=1. On the other hand, for f'(0)=0, we can,
without loss of generality, assume that f'(0) =1, since a
factor different from 1 can always be incorporated into
the definition of ¢; cf. Eq. (23). The calculation of the
higher-order derivatives f(0) goes as follows. From
f(0)=£'(0)=1 and Eq. (25) with a=5, one finds that,
forn=2

n—1l|p—1

(5"=5)r"0)=8 X [ . ]f"’(o)ﬂ"—”(o) . (28)
r=l1

The derivative f“” can thus be calculated in terms of the

lower-order derivatives. For example, one has

FO)=£0)=1, f"0)=2%,
(29)
frO)=%, fM==5, ...

We have thus constructed explicitly a solution to Eq.
(25) and showed that it is essentially unique [apart from
the trivial solution, and the choice of f'(0) =1]. From
Eq. (27), it furthermore follows by induction that
0<f“(0) =<1, Vn, and hence the series

had (n)
f) =3 f%xn (30)

n=0
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converges for all x. This series also defines the corre-
sponding function of a complex argument. This com-
pletes cur proof of the properties of f which are needed
to establish the relation Eq. (26).

We now turn back to state the limit theorems for the
waiting time derivatives on a decimated Sierpinsky gas-
ket. The relevant time-rescaling factor A is given by

r%=5. (31)

With the rescaling, a waiting time distribution (o) (s) of
type (13) will converge, upon renormalization on a Sier-
pinsky gasket, cf. Eq. (21), to the limiting fixed-point
density:

w(s)=1/f(5 A3s*), (32)

where f is the function defined above. The differences
with the 1D scaling are thus the different rescaling given
by Eq. (31) rather than Eq. (17), and the more compli-
cated form of the final attractors [the 1D case corre-
sponds to f(x) =cosh(2x)'?]. For a waiting time distri-
bution with a finite first moment, such as for Markovian
walks, one has a=1. Hence one has to “wait” five times
longer to “go” twice as far. This is, of course, due to the
fractal nature of the lattice. It is in agreement with the
following result for the radial displacement on the Sier-
pinsky gasket'? !5

(r2@))) 2 —yn2/n5 (33)

Since Eq. (32) is the central result of our paper, we re-
formulate it in a more explicit way for a random walk
with finite first moment T=1 (this choice fixes the time
scale). The Laplace transform of the first-passage time
density to go from a site on the Sierpinsky gasket to one
of its four neighbors at a distance of 2", Dgpr(0— 2",5),
attains, for n large, the following scaling form:

lim Dgpr(0— 2",5/5") =1/f(s) . (34)

s 0
The function f is the unique solution of Eq. (25) with
a=>5, f(0)=/(0) =1. More explicitly, f is given by the
series expansion Eq. (30), whose coefficients can be ob-
tained recursively from Eq. (28). The knowledge of the
small-s expansion of f is sufficient to generate the mo-
ments (z”) of the first-passage time:

= ey =(- L g5
ds s=0
For example, we obtain

(tH=%D?% (H=3%(D3,
(36)

(¢4 =812 (1),
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This leads to a value (§7%/{()>=1%, to be compared
with the value of this ratio equal to % for the 1D case.
Further information on the properties of f can be derived
from the observation that it allows to express the solution
of the discrete mapping x, =4x2- | —3x,—1 as X,
=£(5"f " (x0)).

Let us close with a final remark. The limit theorems
that we have proven here deal with first-passage times
densities. On the other hand, there exists extensive
literature on the convergence of probability densities,
i.e., the convergence of random walks to diffusion pro-
cesses (central limit theorems). Obviously, there must
exist a link between these two, which we have not further
explored in this Letter. If this relationship is not too
complicated, the results obtained in this Letter may be
used to settle the question of the scaling form of the
Green’s function on the Sierpinsky gasket. Finally, we
mention that the approach presented here can also be ap-
plied to other simply connected deterministic fractals.
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