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Lattice Expansions and Contractions in Metallic Superlattices
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An electronically driven lattice deformation which explains qualitatively the supermodulus eITect in

metallic superlattices is derived. It is shown in the Thomas-Fermi approximation that the total energy of
a metallic superlattice is lowered by uniform deformations of the constituent materials. The theory gives
the correct order of magnitude for changes in lattice constants, explains why the supermodulus eff'ect is
not observed in systems in which at least one constituent is nonmetallic, and predicts the absence of an
eAect when the bulk Fermi energies of the constituent metals are equal.

PACS numbers: 73.20.Dx, 68.35.6y, 68.65.+g, 73.40.Jn

According to the predictions of continuum elasticity
theory, the elastic moduli (in the long-wavelength limit)
of a stratified medium are expected to be independent of
modulation wavelength. ' Contrary to these predic-
tions, the elastic constants of metallic superlattices are
found to depend dramatically upon modulation wave-
length, in some cases being enhanced severalfold (super-
modulus eH'ect). Such large changes are even more re-
markable, because elastic constants otherwise are quite
structure insensitive. Since the first observation of this
effect, it has been investigated in many systems by
different techniques. Its origin, however, is still contro-
versial, even to the extent as to whether the explanation
is structural or electronic.

The effect of coherency strains at an interface has
been proposed as a structural explanation, but it falls
short by at least an order of magnitude. ' Moreover, it
does not explain the elastic-constant changes observed in
the lattice-matched system Au/Cr, " for which coheren-
cy strains are small. A recent theory' in which an inter-
face is modeled by a (large-angle) grain boundary attri-
butes the modulus enhancement to structural disorder at
the interfaces. Although this theory does yield signifi-
cant changes in elastic constants, it does not explain the
observations in Au/Cr. "

Several electronic theories based on the effect of ener-

gy gaps created at the Fermi surface by the periodic po-
tential of the superlattice have been proposed. ' ' Al-
though these theories explain the existence of a critical
wavelength at which the modulus enhancement is a max-
imum, it has not yet been demonstrated that the magni-
tude of the elastic-constant changes is large enough to
explain the observed anomalies. Recently another elec-
tronic theory, based on charge transfer between layers,
was proposed by one of us. ' Arguments were made that
the transferred charge was delocalized. This conclusion,
however, is now known to be incorrect as shown by a full
calculation of the dielectric response of a thin film. '

An important step towards understanding the super-
modulus effect was the discovery of changes in the aver-
age lattice spacing perpendicular to the superlattice layer
planes. "' ' The changes of the average lattice spac-
ing becomes larger as the modulation wavelength A de-
creases, being of the order of several percent for A=2
nm. These changes cannot be blamed on coherency
strains, since a change is also found for the lattice-
matched system Au/Cr. " Moreover, changes of the
average lattice constant are found to be much larger nor-
mal to the plane than in the plane, ' contrary to what
would be expected if the cause were coherency strain.
For most systems only the average lattice constant was
measured, but for Au/Cr the average lattice constant of
each constituent was measured, showing that Au con-
tracts and Cr expands.

The interpretation of the average lattice-constant
changes is not agreed upon at present and could be due
to either localized strains at each interface, uniform
strains in each layer, or some combination. The assump-
tion of localized interfacial strains has been shown to ex-
plain the observed elastic-constant changes. ' On the
other hand, the assumption of uniform strains has also
been shown to explain the observed elastic-constant
changes, ' ' even so far as to explain the maximum in
Au/Cr. " The origin of the uniform strain was, however,
not explained.

In this Letter, we propose an explanation for uniform
strains in metallic superlattices. For this purpose, it is

sufhcient

to consider a thin layer of one metal M
sandwiched between thick layers of another metal M'.
We let EF and EF be the Fermi energies of infinite crys-
tals of the two metals, and REF =EF —EF be the
difference between the Fermi energies of the two met-
als. When two metals having different Fermi energies
are brought into contact, electric charge is transferred
from one to the other. According to the conventional
model, a dipole layer forms at the interface, giving rise
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to a potential difference V=dEF/e, which equalizes the
Fermi energies in both metals.

The electrostatic energy of the dipole layer for a unit
area of the sandwich (which has two interfaces) is

is linear in v whereas (7) is quadratic in v, the total ener-
gy can always be lowered by a uniform deformation of
the thin layer. The optimum strain is found by minimiz-
ing BU =SU]+BU2, yielding

U, =2(-,' cV'), v =2C(REF)a/8de'. (8)

where c is the capacitance per unit area of an interface.
In the Thomas-Fermi approximation, the induced charge
densities on each side of an interface (at x =0) have the
form

(+q/XrF)exp( —x/XTF), x & 0,
p(x) ='

( —q/XTF)exp(x/XTF), x & 0,
(2)

y(x) =' 4rrqlTp[1 —exp( —x/XrF)], x & 0,
—4nqkrF[1 —exp(x/XTF)], x & 0. (3)

where XTI: and XTp are the Thomas-Fermi screening
lengths in the metals M and M', and q is the charge per
unit area. Solving Poisson's equation yields the electro-
static potential,

Equation (8) implies a uniform strain throughout the
layer which is proportional to 1/d; this provides an alter-
native explanation for the observed 1/d dependence of
the average lattice-constant changes which in Ref. 21
was taken as proof of a constant expansion at the inter-
faces. Although an isotropic strain was assumed, in
practice the strain could be anisotropic because of
coherency eAects at the interface. The change of the
Fermi energy with strain Eq. (5) and the strain energy
Eq. (7) should then be evaluated for an anisotropic
strain.

We illustrate this theory for a metal having a uniform
positive background. The average energy per electron
(in Rydbergs) is then approximately

Consequently the capacitance per unit area for this
charge distribution is

2.210 0.916 0.88
r, +6.8 '

C [4K(krF+ kTF) ] (4)

which is the same as the capacitance of a parallel-plate
capacitor with plate separation XTF+XTp. Since the
Thomas-Fermi screening length in a metal is small, typi-
cally about 0.05 nm, the capacitance c is large, implying
the same for the stored electrostatic energy U~ [Eq. (1)].
Taking kTq =XTp =0.05 nm and REF =2 eV and substi-
tuting in (1) and (4) yields the electrostatic energy
U~ =2X10' eV/cm .

The crucial insight of this theory is to recognize that
there is another way by which the Fermi energies of the
two metals can be made equal, namely, by an appropri-
ate expansion or contraction of the thin layer of metal
M. We let the change of the Fermi energy of metal M
be

v =7 X 10 (10)

which agrees approximately with experimentally ob-

where r, (in Bohr radii) is deftned by —, &(r,az) =1/n
and n is the electron density. In (9), the first term is
the average kinetic energy, the second is the average ex-
change energy, and the third is an interpolation formula
for the average correlation energy. In Fig. 1, the Fermi
energy EF =d (nE)/dn and a =n dEF/dn are plotted.
For a typical electron density r, =3 (which corresponds
to n=6&&10 cm ), a=2 eV. Taking AEF =2 eV,
8=10' dyn/cm, and XrF=krF=0. 05 nm, and substi-
tuting in (4) and (8) yields for the volume strain in a 1-
nm-thick film

REF = —av

when a uniform volume strain v is applied. (Since the
volume strain v is related to the electron-density change
Sn by v = —Sn/n, a=ndEF/dn )The poten. tial differ-
ence V=hEF/e at the interface needed to equalize the
Fermi energies is then reduced by 8V=SEF/e, so that'
the electrostatic energy per unit area of the sandwich is
lowered by

SU~ = —2C(REF)av/e

On the other hand, the elastic energy (per unit area) as-
sociated with a uniform strain v in a layer of thickness d
1s

N
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O
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~aa lag ~ ~ ~

~U2 —
2 Bv d, (7)

FIG. 1. Fermi energy Er =d(nE)/dn and a=ndEF/dn vs
where 8 is the bulk modulus of metal M. Since Eq. (6)
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about an average value EF with amplitude 2 AEF and
wavelength A. In the Thomas-Fermi approximation, the
local Fermi energy is constant across the superlattice.
The electric potential which equalizes the Fermi energy
1s

p(x) =( —, AEF/e)sin(2rrx/A),

which gives rise to an electric field

E (x) = —(rrAEF/e A) cos(2rrx/A) .

(i2)

The average electrostatic energy per unit volume is then

u )
=E /8m=(rrAEF/eA) /16'. (14)

A sinusoidal strain

v(x) =vpsin(2rrx/A),

produces a change

served values of a few percent. The fractional change of
the potential difference at the interface is then 8V/V
= —7x10, and the lowering of the energy of the
sandwich is 6U= —2&&10' eV/cm .

It is straightforward to extend this theory to a super-
lattice in which the composition modulation is smooth
rather than abrupt. We let EF(x) be the Fermi energy
of an infinite crystal having a uniform composition equal
to the composition at position x in the superlattice. In-
stead of a stepwise variation of EF (x), we suppose a
sinusoidal variation,

EF(x) =EF+ —,
' AEF sin(2@x/A),

absence of an elastic anomaly in SnTe/Sb (semicon-
ductor/semimetal), NbN/A1N (metal/insulator), and
GaAs/A1As (semiconductor/semiconductor) superlat-
tices.

The preceding theory is based on the Thomas-Fermi
approximation, which equates the Fermi energies on
both sides of an interface. (The Thomas-Fermi approxi-
mation is also used for the dielectric response within
each metal layer, but this is secondary. ) The more
rigorous approach, of course, is to solve the Schrodinger
equation for the electron states which are coherent
across the interface. Although a previous calculation
of this type for a metal sandwich does not confirm the
eff'ect predicted here, a systematic investigation has not
yet been carried out.

We conclude by noting that a major diA'erence be-
tween the models proposed to explain the supermodulus
eA'ect lies in the associated changes in lattice constants.
Many models claim that the lattice-constant changes are
localized at the interfaces while our model predicts that
they occur throughout each layer. Therefore one way of
testing the validity of the models may be detailed analy-
ses of x-ray data.
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REF (x) = —avp sin(2+x/A) (i6)

in the Fermi energy EF(x). (For simplicity we assume
that a varies little with composition. ) The change in EF
reduces the amplitude of the original sinusoidal variation
of EF(x). Consequently the average electrostatic energy
per volume Eq. (14) decreases by

Bu ~

= —rr (AEF ) av p/4A e (i7)

On the other hand, the average elastic energy per unit
volume increases by

Q2 2 BV 4BVp
1 —2 1 2 (i8)

(For simplicity we also assume B to be independent of
composition. ) Minimizing the total energy yields for the
amplitude of the induced strain

vp=rr(AEF)a/2BA e (i9)

Upon substituting e =2 eV, REF =2 eV, and B =10'
dyn/cm we find vp=2&&10 for a film having modula-
tion wavelength A =2 nm.

A key prediction of the theory presented here is that,
since the sum of screening lengths in (4) is larger if at
least one constituent is nonmetallic, the induced strain in
such a multilayer film is much smaller. This explains the
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