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Direct Observation of Polarization Mixing in Nuclear Bragg X-Ray
Scattering of Synchrotron Radiation
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The direct observation of a polarization mixing in nuclear Bragg scattering of synchrotron radiation
by e- Fe203 is reported. Application of a magnetic bias field having the appropriate orientation was
shown to produce almost complete rotation of the o-polarized incident beam to a z-polarized diAracted
beam. Rotation of this field about the diA'raction vector through 90 caused the diAracted beam polar-
ization to change continuously from a through elliptical to z, as predicted theoretically.

PACS numbers: 76.80.+y, 24.70.+s, 29.75.+x

The study of nuclear Bragg scattering (NBS) has
benefitted significantly from the use of synchrotron radi-
ation (SR) as a photon source. In previous experiments,
the pulsed nature of SR has permitted detailed investiga-
tions of the time dependence of the scattered beam from
yttrium iron garnet (a ferrimagnet) and the simple anti-
ferromagnets FeBO3 and e-Fe203. ' The theory of nu-
clear Bragg scattering has not only addressed the time
evolution of the scattered radiation, but also the polar-
ization dependence of the scattered beam as a function
of both the incident beam polarization and the orienta-
tion of the nuclear quantization axis with respect to the
scattering plane. Experimental investigations of these
polarization phenomena are the subject of this Letter.

Fe has a strong Mossbauer resonance at 14.413 keV.
This resonance is a degenerate multiplet with a com-
ponents corresponding to changes in the magnetic quan-
turn number m. Allowed changes include d,m =0 and
+ 1. The h, m =0 transitions correspond to linear oscilla-
tors, whereas the 8 m = ~ 1 transitions correspond to cir-
cular oscillators whose chirality depends on the sign of
hm. In the presence of local fields and field gradients
such as those found in crystals, the degeneracy is re-
moved and a fine structure can be resolved. The magnet-
ic structure of e- Fe203 is an antiferromagnetic ar-
rangement of ferromagnetic sheets stacked in the (hhh)

« Eoi)2—

direction (rhombohedral indices). The spins lie in the
(hhh) planes but are not quite antiparallel layer to layer
yielding a small, in-plane, ferromagnetic moment. It is
this moment that couples to an applied external field and
allows the alignment of the quantization axis with re-
spect to the scattering plane.

The existence of pure nuclear Bragg reAections from
e- Fez03 has previously been demonstrated using a

Co radioactive source. Measurements of the inAuence
of magnetic field orientation on the spectrum of unpolar-
ized y rays diA'racted by the same sample have also been
performed. More recently a pure nuclear Bragg
reAection has been observed using SR. '" In this work
we have also used synchrotron radiation, and we have
further taken advantage of its high degree of linear po-
larization to measure the polarization properties of the
nuclear scattering.

Among the predictions for scattering by circular oscil-
lators is that of polarization mixing in which the polar-
ization state of polarized incident beam may be modified
on Bragg reAection depending on the orientations of the
nuclear oscillators relative to the scattering plane. The
present work was undertaken to study these predictions
experimentally. The polarization dependence of nuclear
Bragg scattering is contained in the structure factor for
photons near a nuclear resonance. Following van Burck
et al. this may be written as
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In the above equation the sum is over the resonant atoms in the unit cell. E is the incident photon energy, X is the wave-
length, V is the unit-cell volume, and k„, is the incident wave vector. I~ is the spin of the ground state, g is the abun-
dance of the resonant nuclei, and a is the conversion coefficient. Ep( denotes the energy of lth multiplet level and I its
total width. f~(k~) is the Lamb-Mossbauer factor, Ci the Clebsch-Gordan coefficient for a given transition from Ig to
the excited state I„and drnI the corresponding change in the magnetic quantum number. The position of the resonant
nucleus in the unit cell is denoted by r~. The incident and scattered directions are indicated by subscripts i and j, re-
spectively. The element I'~"; ' is the polarization factor describing the coupling of the transitions to the electromagnetic
field, and can be written as

(h; u. ), (h) u, ), am =0,
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TABLE II. Integrated intensities (arbitrary units) for the
four possible combinations of the polarization analyzer setting
and the spin orientations.

(a)

50—
a Fe~O~ (777)

u, J u, II

840
5

85
455

Separate measurements were made with the analyzer
set to transmit o.- and z-polarized radiation. At each
setting, the magnetic quantization axis was changed
from 0 to 90' in steps of 15 . More data were acquired
at the extremal angles to give better statistics for the
"pure" settings (i.e., those giving all a or all rr). In-
tegrated data for these pure settings are given in Table
II, and the rocking curves are shown in Fig. 2.

It is interesting to note that, in Fig. 2, the contrast be-
tween u, J and i, ll is much greater for the z setting of
the analyzer than for the cr setting. In Fig. 2(a) the
low-intensity data correspond to the polarization mixing
case with the analyzer set to pass o. Thus, the z-po-
larized component of the incident beam will be switched
to o. in the diffracted beam, and hence will be detected.
Of course, this z component of the incident synchrotron
beam is much weaker than the o. component. Converse-
ly, the low-intensity curve in Fig. 2(b) corresponds to the
nonmixing case with the polarizer set to pass z. Since
the theory predicts that in the nonmixing case z-polar-
ized radiation does not couple to any of the transitions,
no diAracted intensity is observed.

For intermediate directions of the magnetic quantiza-
tion axis, the radiation should be elliptically polarized.
Figure 3 shows data for such intermediate orientations of
magnetic Geld. Data for a and z polarization of the
scattered beam are shown together, with arbitrary scales.
The complementary behavior is readily apparent, despite
the inability to directly compare the absolute a. and z in-
tensities to each other. These data are consistent with a
continuous transition from o. through elliptical to z po-
larization. A full determination of the polarization state
requires the use of a filter which passes only circularly
polarized light. However, the data presented above rep-
resent persuasive evidence that the observed polarization
behavior of nuclear Bragg scattering agrees with the
theoretical predictions.

In summary, we have made direct observations of po-
larization mixing phenomena in the nuclear Bragg scat-
tered synchrotron radiation from e-hematite using a
Bragg reAection polarization analyzer. The rotation of
the polarization plane of the diA'racted radiation from o.

to x in the mixing geometry is shown to be complete
within the limits of observation. Further, it is found that
scattering of z-polarized radiation in the nonmixing
geometry is forbidden. The observed eAects are in ac-
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cord with theoretical predictions. In addition, we point
out that it is now possible to generate an x-ray beam
having very long coherence lengths with switchable po-
larization orient@ tion. Such a beam should have in-
teresting applications in fundamental optics and
polarization-dependent inelastic x-ray scattering experi-
ments.

FIG. 2. (a) Rocking curves at resonance for orientations of
the magnetic quantization axis parallel and perpendicular to
the scattering plane, with the polarization analyzer set to
transmit a.-polarized radiation. As predicted, the intensity is
greater for u, perpendicular to the diA'raction plane. (b) As in

(a), but for the case when the polarization analyzer is set to
transmit rr-polarized radiation. Note that the signal for u, per-
pendicular to the diAraction plane is much less than that for u,
parallel in (a).
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FIG. 3. Intensity scattered into the o.- and z-polarization
directions as a function of the orientation of the magnetic
quantization axis.

We are extremely grateful to Dr. A. K. Freund of the
European Synchrotron Radiation Facility for the loan of
the beryllium single crystal which was grown by Sibylle
Stiltz of Max-Planck-Institute in Stuttgart, West Ger-
many, and to J. P. Remeika and A. S. Cooper of AT%, T

"' Present address: Central Research Institute of Physics,
Budapest, Hungary.

'E. Gerdau, R. Rufr'er, H. Winkler, W. Tolksdorf, C. P.
Klager, and J. P. Hannon, Phys. Rev. Lett. 54, 835 (1985).

2U. van Burck, R. L. Mossbauer, E. Gerdau, R. RuAer, R.
Hollatz, G. V. Smirnov, and J. P. Hannon, Phys. Rev. Lett. 59,
355 (1987).

3G. Faigel, D. P. Siddons, J. B. Hastings, P. E. Haustein, J.
R. Grover, J. P. Remeika, and A. S. Cooper, Phys, Rev. Lett.
58, 2699 (1987).

4G. Faigel, D. P. Siddons, J. B. Hastings, P. E. Haustein,
J, R. Grover, and L. E. Herman, Phys. Rev. Lett. 61, 2794
(1988).

5See, for example, J. P. Hannon and G. T. Trammell, Phys.
Rev. 186, 306 (1969); Yu Kagan and A. M. Afanas'ev, Z. Na-
turforsch. 28a, 1351 (1973), and references therein.

C. G. Shull, W. A. Strauss, and E. P. Wollan, Phys. Rev.
83, 333 (1951).

G. V. Smirnov, V. V. Sklyarevskii, R. A. Voskanyan, and A.
N. Artem'ev, Pis'ma Zh. Eksp. Teor. Fiz. 9, 123 (1969) [JETP
Lett. 9, 70 (1969)].

~A. N. Artem'ev, V. V. Sklyarevskii, G. V. Smirnov, and E.
P. Stepanov, Pis'ma Zh. Eksp. Teor. Fiz. 15, 320 (1972) [JETP
Lett. 15, 226 (l972)].

U. van Burck, G. V. Smirnov, R. L. Mossbauer, F. Parak,
and N. A. Semioschkina, J. Phys. C 11, 2305 (1978).

' D. P. Siddons, J. B. Hastings, and G. Faigel, Nucl. Instrum.
Methods, Phys. Rev. , Sect. A 266, 329 (1988).

''S. Stiltz and A. Freund, J. Cryst. Growth 88, 321 (1988).


