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We show how, by resorting to a one-fermion realization of the Pauli operators, the Hamiltonian of the
Jaynes-Cummings (JC) model can be identified as an element of the superalgebra u(1|1), which plays
the role of a dynamical algebra. The extension of this notion to osp(2|2) allows adding both virtual and
real two-photon processes to the JC Hamiltonian. The exact diagonalization problem is tackled here in
the special case when the coupling constants of the fermionic terms of the “dressed” JC Hamiltonian are

assumed to nilpotent Grassman-Banach numbers.

PACS numbers: 42.50.—p, 03.65.Fd

The idealization of the fundamental two-level atom
and single-mode radiation field interaction provided by
the Jaynes-Cummings (JC) model' matches, with unex-
pected accuracy, Rydberg maser experiments designed to
detect the atom-single-photon coupling.? However, it
requires consistent modifications in order to encompass
the features of a ground test on quantum electrodynam-
ics. The fundamental minimal coupling form of the
Hamiltonian for the interaction of light with a bound
electron is
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where H, is the energy of the electron in the absence of
the electromagnetic field [the potential energy being
U(r)1, whereas

Hin=(e/2mc)(—A-p—p-A+A?%c), @)

and the Coulomb gauge is assumed for the vector poten-
tial A.

In the dipole approximation— justified by the relative
magnitude of the atom size and of the optical wave-
length3—the Hamiltonian (1) of an atom interacting
with a single-mode radiation field can be written, under
the assumption of a two-level atom, in a second quan-
tized scheme, as the sum of

Ha=+w(aja,—afa)), (3a)

Hiaa=v(bT0+3), (3b)
Hin=H{ +HSP, where

H{ =gbala,+gbTala,+H.c., (3c)

HE =x(bT+b)2. (3d)

In Egs. (3a)-(3d) b and b denote the photon creation
and annihilation operators satisfying the commutation
relation [b,bT] =TI gl and a;, i =1,2, denote the creation

and annihilation operators for the electron in the state
corresponding to level i satisfying the anticommutation
relations {a,-,aj} =0, {ai,af} =38;;I; h was set equal to 1;
and the frequencies ® and v, as well as the coupling con-
stant x, were assumed real. Naturally the operators
b,b* commute with a,',a,j, i=1,2.

HEY consists of two terms: The first term represents
real transitions (where, say, the electron jumps from the
lower level 1 to the upper level 2 as a photon is absorbed,
or the conjugate process), and the second describes virtu-
al transitions referring to processes in which one photon
is created and then absorbed while the electron goes
from level 1 to level 2 and back (or vice versa). Such
virtual transitions should be considered as a single two-
photon process.

In a rotating-wave approximation the second term of
H{Y is related to high-frequency phenomena, compared
with the slowly varying processes typical of the direct
single-photon transitions. Thus its average contribution
over macroscopic times is negligible. One should, how-
ever, keep in mind that just virtual processes of this kind
are responsible for the energy-level shift in hydrogenlike
atoms.*

As for H 1(,121), since it stems out of A? it describes two-
photon processes whose contribution is of the same order
of magnitude as the above virtual processes.>

The customary JC model derives from (1) and (3),
when the rotating-field approximation is adopted, and all
the two-photon processes are neglected. It is usually
written, resorting to the two-fermion realization of su(2),
o+=(c_)'=aja\, o,=% (aJay—ala,), in the form

Hic=wo,+v(b'b+ +)+gbto_+gbos, 4)

where o+ =ox *io, and o,, a=x,y,z denotes the Car-
tesian components of a spin-3 angular momentum
operator (equal to % of the corresponding Pauli ma-
trices).

In this Letter we describe an approach to the JC mod-
el, resorting to the concept of dynamical superalgebra,®
to show that not only can different regimes of the model
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be described within a unified scheme, but also the
higher-order terms— neglected in order to derive it—can
be reinserted and taken into account by the same
(super)algebraic structure.

The notion of dynamical superalgebra is the following.
If the Hamiltonian H is recognized as an element of
some n-dimensional rank-r Lie algebra .£, the spectrum
is obtained in a straightforward way by means of an au-
tomorphism ®: L— L such that ®(H)=3X=qa;h;,
where the set {hy,...,hsel, ..., ,es—,) is a Cartan basis
for L. .L is said to be the dynamical (or spectrum gen-
erating) algebra for H if ® is an inner automorphism. A
Lie superalgebra &, on the other hand, is but a Z,-graded
Lie algebra, namely one in which the generators are
classified as even (bosonic) and odd (fermionic) with the
property that the product of two operators with the same
parity is even, whereas the product of an odd operator by
an even operator is odd. The bosonic generators define a
Lie algebra &y by commutation, the fermionic generators
are tensor operators corresponding to some repr-senta-
tion of &9 and satisfy anticommutation relations.

The basic step of our approach is the observation that
by the Holstein-Primakoff method,” the realization of
su(2) in terms of two fermions a;,a’, i=1,2 (or,
equivalently, of Pauli matrices) can be reduced to one in
terms of a single fermionic mode (f,f") by setting
o+=f", o-=f, and o, =+ Qff—1I), where {f,f} =0,
{f.f11 =1 Furthermore, after the change in notation
b=B_b'=B. f=F_ f'=F4, using the customary
mathematical notation concerning superalgebras, we no-
tice that the superalgebra sh(1) generated by {Fy,F_;
B+,B -, 1}, with the commutation-anticommutation rela-
tions {F,F}=6.—,I, [B_,B+1=I, [F.B,1=0, (&7
=+ ) (often referred to as the super-Heisenberg alge-
bra) is but the graded version of the Weyl-Heisenberg
algebra. Then, upon defining

V=F+F_-+B+B_-, M=F F_—BB_—1I,
(5a)

Q+=0t =2""2B_F,, (5b)
the JC Hamiltonian is
Hic=5(+vIV+ 3 (0—v)M+TQ++0-T (6)

and can be easily recognized as an element of the su-
peralgebra associated with the unitary supergroup
u(1]1). Indeed the tensor operators (5) in the envelop-
ing algebra of sh(1) satisfy the commutation relations
{00 =3V6c—,, W, M1=0=[V,0.], [M,0]=2€Q.
from which it appears that the bosonic sector algebra &
is u(1)®u(1), whereas M acting on the fermionic sub-
space generates another so(2) == u(1) subalgebra. V is
the Casimir operator.

Two observations are now in order. Hjc is indeed a
bosonic element, as it should be, because the overlap in-
tegral g, when we switched from (4) to (6) has itself ac-
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quired an odd gradation (it is related now to the quan-
tum amplitude of a fermionic field). We denoted it as I'
in order to emphasize this new feature. I should be
treated not as a ¢ number, but as an anticommuting vari-
able (anticommuting also with fermion operators), be-
longing, e.g., to the odd part Q; of the Z,-graded
Banach-Grassman algebra Q =Qy® Q). 8 Notice that I'T
can be considered as a ¢ number, in that it commutes
with everything else. In order to illustrate more clearly
the algebraic method, we shall henceforth treat it as nil-
potent, even though this is not strictly necessary, and
somewhat conceals its physical meanings. Indeed I'T
could be assumed to be a complex variable. In order to
derive a numerical value for it one should, e.g., consider
the JC atom as immersed in a heat bath at fixed temper-
ature 7, and solve the corresponding self-consistency
equations.® On purely quantum mechanical grounds, for
an isolated atom, I'T should be regarded simply as a
spectral parameter.

The second observation is that the group space in
which the rotation U corresponding to the automorphism
@ is realized, in this case, is in fact a superspace. U
maps the fermionic sector onto the bosonic one, and is
implemented by the adjoint action exp(adZ) of the
skew-Hermitian operator Z=(¥Q4++%¥Q_-), whose
characteristic “angle” ¥ € Q;. Upon selecting ¥ =(w
—v) 7T, one gets for v,

Hy =exp(adZ) (Hje)

=3 12,12, .[Z,Hicll.. ] (n brackets)

={; (0+WV+R—VITHV+ i (0—v)M.
)]

Notice that (7) is precisely the result one obtains from
the customary JC spectrum,' by setting gg ==+ S TT
and expanding the square root as if the latter were nilpo-
tent.

If v=w, Hjc is but an element of the central exten-
sion of the Weyl-Heisenberg algebra generated by A
=I'Q+, AT=Q_T, C=ITV (with commutation rela-
tions [4,4'1=C, [4,C1=0=[47,C]), and diagonaliza-
tion— achieved in straightforward way— gives

Hy=wV+EV'ATT, (8)

where £ is the scale-fixing constant.

We now observe that there is a complete chain of
finite-dimensional simple Lie superalgebras embedded
one into the other, each generated by tensor operators
realized in the enveloping algebra of sh(1), rooted in
u(1]1) (Ref. 9):

u(1|1)cosp(1]2)cosp(2]2)cC.. .,

whose dimensions are respectively 4,5,8, ... . osp(2]|2)
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is generated by {Q+,Q —,C+,C—:K +,K —,K,Fo}, where
the new fermionic elements are given by

C.=2"'"2BF.=CL,, e==, )
the new bosonic elements by

K.=0v2) 'B2=KL, e==, (10)
and the linear combinations

Ko=3B+B_++D=5(WV—-M), (11a)

Fo=53(F+F-—3D=7WV+M), (11b)

were introduced for convenience.

The bosonic commutation relations are [K—,K+]
=Ky, [Ko,K] =€K,, [Fo,K:] =0, and [F¢,K¢] =0. The
fermionic anticommutation relations are {Qe, Q,,}
=8¢ Ko+ Fo), {C.,C}} =8¢, — (Ko —Fo), and {Q,,C;}
=\/§56, —-yK,. Moreover, we have the mixed boson-
fermion commutators [Q.K,]1=27"2¢5, .C., [CeK,]
=278 0, [QeKol=7€Q., [CoKol=—71eC,
[Fo,Cd= 3 €C., and [Fo,0.) =7+ €Q.. One can easily
check that {K+,K_,Ko generate a sp(2)~su(l,1)
subalgebra, whereas F acting on the fermionic subspace
span {Q+,0—,C+,C -} generates a further so(2) ~u(1)
subalgebra. The realizations (5b), (9), (10), and (11)
correspond to the Casimir operator

C=K§—{K4,K_}—F§—Fo+Q+Q-—C4+C—

being equal to zero and the operators Q., C. anticom-
muting with Fy: {Q,_«,Fo} =0={C.,Fo}. The most gen-
eral Hamiltonian which is a bosonic element of osp(2|2)
[more precisely osp(2|2) + sh(1)] can now be written as

H=Hjc+(yK++7K_)+(AC++C-A), (12)

where y € C and A € Q; (notice that in the new notation
Hijc=20F¢+2vKo+TQ++Q_T, and that also AA will
be assumed to be nilpotent).

It is easy to recognize that the two new terms in (12)
are just those previously neglected, respectively, H i(nzt)
(provided y=2+/2x and the frequency v is increased by
2x) and the second factor in H{Y (with A=T). Thus
the whole Hamiltonian (1) is described in second-
quantized form and in the single-fermion realization dis-
cussed above by (12) (referred to in Ref. 10 as the
“dressed” JC model). The adjoint action of the skew-
Hermitian operator Z=®Q4++®Q_+60C4++6C_,
where @, © € Q), by selecting

o=@tV L 7 N2 Ty 2200V

5 ok 3 82 3 &2
(13)
@=Q—_VA+_1_1r+_\/Z_rz_mx_££@_;LArf,
5 A6 35 3 s

where §=w?—v2+ 3 | y| 2, rotates H into a new Hamil-
tonian Hgz € Blosp(2]2)),

Hpg=20wpFo+2vgKo+oK++6K— . (14)

Upon setting a+ =[(wo+v)IT* (0 —Vv)AAL/26, B
=(1/8)ITAR, and p=(y/~/28)TA, the coefficients are
given by wp=w(l+8)+a-—Relp), veg=v(l+3+p)
+a+, and

o=yl1+ 5+ (wa- —vai)/(w?—v})+20p/y?].
Customary rotation in su(1,1) gives finally
H;=2wisFo+2vsKo
=@ F+F-+vyB+B -+ 35 (v — 0,1,

with wg =wg and vy =3 — |o|?/2)"2 The eigenval-
ues are straightforwardly obtained in the direct-sum
Fock space of bosons and fermions (F+F — has eigenval-
ues 0,1 and B+B_ has eigenvalues n=0,1,2,...). In
the case corresponding to the “dressed” JC model
(A=T), the spectrum is completely determined by

0§ =wp+[(v—Rey/~2)/ITT,

o(v—Rey/V2) =
s~ |y YD

thus proving the exact diagonalizability of the quantum
version of (1) for a two-level atom, at least for I'T € Q.
The case in which I'T and AA are not assumed to be nil-
potent will be discussed elsewhere.

v =2 — | y|2/2) 24
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