VOLUME 62, NUMBER 12

PHYSICAL REVIEW LETTERS

20 MARCH 1989

Fluctuations and Scaling in a Model for Boundary-Layer-Induced Turbulence
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A simple model, in which a boundary layer creates spatial turbulence by emitting “hot plumes,” is in-
troduced. In the turbulent regime we find exponentially decaying fluctuations, a characteristic frequen-
cy of time signals, and a power-law scaling between analogs of hydrodynamic quantities.

PACS numbers: 47.25.—c, 05.45.+b, 47.20.Tg

Boundary layers can play a crucial role for the onset
of turbulence in a fluid.! The layers occur because a
fluid is subjected to boundary conditions for the velocity
and temperature fields at the boundaries of a container.
In some convection experiments the fluid exhibits a
thermal boundary layer characterized by a strong
thermal gradient as compared to the gradient in the body
of the fluid. With an increase of the gradient, the
boundary layer becomes unstable against wave forma-
tions and wave fronts may detach from the boundary
layer and be convected as “plumes” into the laminar
flow.2 The motion of these plumes causes large fluctua-
tions in the “hard” turbulent regime.

Generally, it is difficult to calculate this spatio-
temporal behavior in the turbulent state from the
Navier-Stokes equations. In order to gain intuition and
facilitate computations, models with a set of coupled
dynamical systems, coupled-map lattices, have recently
been introduced.’™® Here we shall adopt a similar ap-
proach with the addition that a “thermal” boundary lay-
er is introduced into the model. This is achieved by
keeping a fixed “hot” boundary condition at the bottom
plate of the container. Then a boundary layer will ap-
pear as time evolves. At a certain critical value of a gra-
dient across the system the boundary layer becomes un-
stable and hot plumes are released. The laminar state is
then locally excited into turbulent behavior by the

plumes which are convected some distance into the lami-
nar state. This distance is determined by the strength of
the heat diffusion and the turbulent fluctuations that
build up in the center of the container and therefore a
consequence of the interplay between heat diffusion and
heat convection.

A study of turbulent versus nonturbulent behavior via
dynamical systems calls for maps that exhibit both
chaotic and regular (“laminar”) behavior. Very simple
maps of this type have recently been introduced by
Chaté and Manneville® and are of the form

rx, x<0.5,
filx)=9r(1—x), 0.5<x=<1,
x, x>1.

(1)

For r > 2 the map (1) is a chaotic repeller. The motion
is chaotic when x < 1, which we denote ‘“hot.” The tran-
sient state, x; > 1, is laminar in the sense that f,(x;)
=Xx., and this state is always marginally stable. When
maps of the form (1) are placed on a 1D lattice and cou-
pled diffusively, Chaté and Manneville found that as the
coupling exceeds a critical value, hot sites percolate
through the system and give rise to spatio-temporal in-
termittency patterns.®

Here we introduce a similar model in two dimensions.
The crucial new ingredient is thé addition of a convec-
tion term:

x5 = £, + 5 elfy T+ £, + T + £, (e TD) — 4, (x,50)]

(i,j) is a point on an N XN lattice and n is the time step.
The parameter ¢ controls the diffusion and the v term
models the convection that displaces hot fluid vertically.’
The boundary layer is enforced by the constraint that the
system is kept hot at the bottom (j=1)

x(i.l)=x8 ,

3)

The boundary conditions at the other three boundaries
are free. We set xp=0 and the parameter in (1) to r
=3. In the calculations presented here, the value of ¢ is
less than the critical value €. because hot sites should not

xB<1.
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+vlfp ) = £, (2)

percolate but only be induced diffusively from the bound-
ary. The model is initialized in a state where all sites are
laminar x§*” =1.1+7n (n represents a small amplitude
noise term). The time evolution is then visualized by
marking the hot sites, i.e., sites where x ©) < 1. In that
way it is easy to observe the hot plumes that travel
through the laminar state. If a site is not excited into a
hot site by a convecting plume, it stays laminar (i.e.,
x @7 >1). After a few time steps hot sites will diffuse a
short distance from the hot plate into the system. This is
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manifested as a boundary layer where heat is only trans-
ported by diffusion and this layer is identified in the fol-
lowing way. For a specific value of ¢ we find a critical
value v, below which there is a sharp gradient (over a
few lattice layers) of the number of hot sites in each lay-
er and no gradient in the number of hot sites above these
layers, which is the laminar state. This is the analog of a
sharp temperature gradient in a thermal boundary layer
of a convection experiment. To be more specific: The
number of hot sites in layer j is calculated and denoted
H(j). Then, if v<v,, H(j) (<N) falls off to zero
within a few layers above j=1. As the strength of the v
term is increased beyond the critical value the layer be-
comes unstable and plumes (i.e., patches where
x %7 < 1) are constantly released from the boundary
layer. The plumes are convected upwards but due to
diffusion most of them diminish in size and eventually
disappear. Some plumes reach the top of the container.
This is illustrated in Fig. 1.

The turbulent state can be characterized quantitative-
ly by its fluctuations. To measure those we place a probe
at a specific point in the center of the cell [here at
(i,j) =(25,18) with IV =50; see Fig. 1] and measure the
number of time steps ¢, for each plume to pass the probe.
As the system evolves many plumes sweep intermittently
across the probe. The corresponding distribution of
times D(z,) is plotted in Fig. 2 on a semilogarithmic
scale. The straight line indicates an exponential distri-
bution

D(p)~exp(—at)) . 4)

To check for universality the distribution is calculated
for four different values of v and e. When normalized as
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FIG. 1. A snapshot of the simulation calculated for €=0.12,
v=0.04 > v.~0.018, r=3.0, and x3=0 on a 50x50 lattice.
The patches are the “hot plumes” for which x % < 1. The
plumes are released from the boundary layer and drift convec-
tively upwards.
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in Fig. 2 there does not seem to be any significant depen-
dence in the constant a on the parameters v and e.
Surprisingly, the same constant is found even far above
the percolation threshold (at v=0.08 shown by the
squares in Fig. 2). Similar exponential behavior has also
been observed experimentally in the hard turbulent re-
gime.? As argued in Ref. 2, one expects an exponential
distribution when the behavior around the probe can be
considered as a series of randomly distributed events.
This is very much in accordance with our visualization of
the motion around the probe; plumes pass in an intermit-
tent fashion and one event is little influenced by the pre-
vious events.

In the experimental and theoretical work of Heslot,
Castaing, and Libchaber® and of Castaing et al.,? the
scaling behavior between various hydrodynamic quanti-
ties was investigated. To adopt a similar approach for
this system we consider a quantity that is a measure of
the total heat flux fed into the system. This quantity is
estimated by H(2), the total number of hot sites in the
layer adjacent to the bottom layer.® Averaging over
many time steps (~2500) and dividing by the size of the
system, we obtain the fraction of hot sites (H(2))/N
=(H). The gradient term, proportional to v, plays the
role of a temperature gradient over the system. We now
vary v and calculate the corresponding fraction of hot

sites (H). Figure 3 shows the results indicating a
power-law scaling
(H)~ v (5)
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FIG. 2. The distribution of passage times logD(z,) vs t,.
Circles: €=0.12, v=0.035; triangles: ¢=0.12, v=0.05;
squares: €=0.12, v=0.08; crosses: €=0.14, v=0.05. The
different curves are normalized to the same value of D(z,) at
tp =5. Measurements for 7, =<3 are disregarded. Each calcu-
lation is performed over ~10° time steps.



VOLUME 62, NUMBER 12

PHYSICAL REVIEW LETTERS

20 MARCH 1989

o8}

o7r
<H>

o6

00! 4 003 005 007

v,
Vv

FIG. 3. A plot for €=0.12 of the fraction of hot sites (H) vs

the gradient v on a log-log scale. Each point of (H) is aver-

aged over 2500 time steps. The line has a slope of 3. The

critical value v, where the boundary layer becomes unstable, is

indicated by an arrcw.

from the critical value v, and up to v—~0.06. The line
through the points has a slope =3 and fits the points
quite well (although there is no immediate reason for the
exponent to be a rational number). For v below v, the
boundary layer is stable and plumes are not emitted,
which is seen as a deviation from the 8= % scaling law.
For v> ~0.06 the density of the plumes becomes very
high and they start to percolate through the laminar re-
gime. This changes the motion of the plumes and the
numerical measurements indicate a deviation from the
scaling law (see Fig. 3). A percolating density of plumes
should be characterized by a very large value of a corre-
sponding Rayleigh number such that the range of scaling
in Fig. 3 might model many orders of magnitude in Ray-
leigh number. It is therefore tempting to draw a parallel
between the scaling law Eq. (5) and the power-law scal-
ing between Nusselt and Rayleigh numbers measured in
convection (Refs. 2 and 8). However, variation in v
changes the effective heat diffusion and (H) cannot be
considered to vary proportionally to a Nusselt number.
Similarly, a change in v is not likely to be proportional to
a change in a Rayleigh number. Qualitatively, however,
there is similarity between the model and the experi-
ment. The exponent 8 might change if the model is in-
vestigated in 3D instead of in 2D. Also, the exponent is
likely nonuniversal. '°

Finally, the frequency spectrum of a time signal
recorded at a probe is considered. At a point (i,j) on
the lattice we monitor a signal y,,(i’j) defined as

o Joif x =1,
L)) = . 5
n 1if x> 1. ©)

The signal is digitized to avoid “noise” from the chaotic
motion where x,%*” jumps around in the interval [0,1] as

time evolves. Time sequences (~10000 steps) have
been numerically extracted at two probes, one close to
the bottom plate at (i,;) =(25,3), and one at the central
probe (i,j) =(25,18). The corresponding Fourier spec-
trum shows a clear maximum, defining a characteristic
frequency of the motion. In agreement with the experi-
mental observations,? the characteristic frequency at the
center w, is lower than the characteristic frequency at
the bottom, w,. We find evidence for a scaling law,
wp~v® with & close to 0.5, but our numerical results
here are not as good as the scaling law for the heat flux
depicted in Fig. 3.

In conclusion, we have introduced a simple model for
spatio-temporal turbulence with a boundary layer. At a
critical value for the heat flux, the boundary layer be-
comes unstable and emits patches of the layer into the
laminar regime. The associated fluctuations and scaling
laws are in qualitative agreement with experimental ob-
servations. The model has severe limitations as com-
pared to a convection experiment!' and quantitative
agreements are therefore not to be expected.
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