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We estimate the tr+-tr electromagnetic mass diff'erence within the I/¹xpansi on approach to ha-
dronic matrix elements. Perturbative QCD and a truncated meson theory describe the high- and low-

photon-loop-momentum contributions, respectively. The matching between these complementary pic-
tures for strong interactions is discussed.
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Despite our better understanding of strong interac-
tions, the theoretical study of hadronic weak decays
remains a rather diScult problem. For illustration, the
AI =

2 rule observed in K decays has defied explanation
for more than thirty years. This unsatisfactory situation
is due to our present inability of treating strong-inter-
action corrections to weak processes below the 1-GeV
confining scale. The evaluation of the corrections arising
from the low loop momenta requires indeed relatively
new nonperturbative tools such as the lattice, QCD sum
rules, or the 1/N expansion. ' The latter analytical ap-
proach is particularly simple and provides already a good
qualitative description of light-meson strong interac-
tions. 2 After all, the Zweig rule observed in P decays,
i.e. , at a scale where perturbative QCD breaks down, can
only be understood in the framework of the 1/N expan-
sion.

It has been recently advocated that the 1/N expan-
sion also gives quantitative predictions for weak hadronic
matrix elements. In the large-N limit, the four-quark
operators induced by perturbative QCD split into prod-
ucts of two-meson operators. The further nonperturba-
tive corrections arising from physics below 1 GeV can
then be estimated within a truncated chiral perturbation
theory. Therefore the I¹/p xnaisonapproach allows a
link between the short-distance domain of perturbative
QCD and the long-distance domain where a description
in terms of hadronic bound states is obviously more ap-
propriate. The difference between this complementary
approach and the standard pure chir al-perturbation-
theory treatment has been given in Ref. 5.

In this Letter, we consider the z+-z electromagnetic
mass difference using the method developed in Ref. 4.
We use the photon momentum to divide the loop integra-
tion into two parts. For the photon momentum q be-
tween zero and the Euclidean M cutoff, we evaluate the
contribution to the mass difference within an effective

,' f Trl2)„U 2)„U+—r(mtU+Utm)]

with m =S—iP, U=exp(i J2tr/f), tr=g, X,tr', and f
=132 Mev. The covariant derivative in Eq. (1) is
defined by

n„U =a„U+i(UV„V„U+UA„+A„U) . —(2)

chiral Lagrangian truncated to the lowest-lying mesons.
On the other hand, above M, we first use the pertur-
bative-QCD picture to derive an expression in terms of
quark field operators and then take the large-N limit to
express these operators in terms of meson fields. The ad-
vantage of the z+-z mass difference over the weak ha-
dronic matrix elements treated in Ref. 4 is this unique
identification of the loop momenta involved in the QCD
and meson pictures.

The leading-order-N (in the 1/N expansion) factoriz-
able contribution to the x+ -z electromagnetic mass
difference is forbidden by spin and parity. For the same
reason, the next-to-leading factorizable contributions are
also vanishing. The aim of this Letter is therefore to es-
timate the next-to-leading nonfactorizable contributions
to the z+-z electromagnetic mass difference.

Let us start with the calculation of the perturbative-
QCD contribution above the cutolf M . Penguinlike di-
agrams only induce isospin-zero operators which cancel
among each other in the mass difference. Consequently,
in the chiral limit, the order-e, contributions are simply
given by the diagrams in Fig. 1. A straightforward cal-
culation of these two Feynman diagrams leads to a
(gauge invariant) expression in terms of four-quark
current-current and density-density operators. Their z-z
hadronic matrix elements are easily estimated using the
well-known nonlinear a model for the pion fields n' cou-
pled to external vector (axial-vector) currents V„(A„)
and scalar (pseudoscalar) densities S(P):
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FIG. 1. Nonzero contributions to the short-distance part of
the ~+-z mass diff'erence. The wavy line is a photon, the cur-

ly line is a gluon, and the full line is a quark. v~v
(a)

v~v
A

A straightforward identification with the QCD La-
grangian gives then the following bosonization of cur-
rents and densities:

Vpv'(A„)=qv )„(y5)q; =i ,' f (9—„U U~ r)„UU )'~,

Z '( n)—=q, (),)q, = —,' f„'r(U'—+U)',
(3)

with r(p)m, (p) =2m', m, (p) being the strange-quark
mass defined at the renormalization point p.

The large-N approximation ensures the factorization
of the four-quark operators induced by the diagrams of
Fig. 1. Consequently, only the density-density operators
survive in the chiral limit (m =0) and we obtain the fol-
lowing z+-z squared mass difference:

"d
hm (pert. QCD) =6 '2 a, ((0

~ qq ~
0))f2 4 (4)

wtth (0
~ qq ~

0) = —f r/4. We notice that the result
given in Eq. (4) can also be derived in the operator-
product-expansion approach where the pion fields are
first reduced. The explicit expansion of the induced
vector-vector minus axial-axial current operator is given
in Ref. 6.

Let us now turn to the evaluation of the meson contri-
butions below M . The pseudoscalar exchange contribu-
tions [see Fig. 2(a)] are obtained from Eq. (2) with the
substitution

FIG. 2. (a) Feynman diagrams contributing to the long-
distance part of the z+-z mass diA'erence for the low-energy
truncation with only pseudoscalar mesons. (b) Same but for
the low-energy truncation with the pseudoscalar, vector, and
axial-vector mesons.

+mv Tr[(V„—g 'V„)'+ (A„—g 'A„)'], (7)

with

L„(R„)= V„+.A„= —,
' X, (V„' T- Ag ),

Fp, =d„L (R),—d,L (R)„—ig [L (R )„,L (R),] .

The covariant derivative defined with respect to the

strong dependence on M (see Fig. 3). A direct test of
our method is therefore to improve the meson approxi-
mation by including heavier resonances.

Let us consider the vector (V„) and axial-vector (A„)
exchange contributions to the x+-~ mass difference [see
Fig. 2(b)l. The minimal chiral-invariant "massive
Yang-Mills" version of the Lagrangian containing x, p,
and a] mesons and satisfying the two Weinberg sum
rules reads

,' f TrD„UD—„Ut——, Tr(F„,F/'+F„,Fg')

V„=ediag( —', ,
——,', —

—,
' )8„™,A„=O,

and we find

(5)
h, m

(HeVj

3 I M
am.'(0 +) = a, g

dq'. (6)

If we define the cutoff M to be the (matching) scale
where the integrands in Eqs. (4) and (6) are equal, we
obtain the reasonable range 0.7 GeV ~ M~ 0.6 GeV
for 0.12 GeV ~ m, (1 GeV) ~ 0.18 GeV. The total
contribution to the z+-x electromagnetic mass splitting
is then twice the short-distance contribution. We obtain
4m=m + —m 0=6.4 (4.3) MeV for AocD=0. 3 GeV
and m, (1 GeV) =0.12 (0.18) GeV, respectively. For
&qcD =0.2 GeV, we find Am =5.5 (3.7) MeV. This is in

fair agreement with the "observed" mass difference
h,m'""'=4.43+ 0.03 MeV obtained after subtraction of
the small effect due to the md-m„quark mass difference.

The severe truncation of the meson theory to the pseu-
doscalars represents a good first step. However, a com-
parison between Eqs. (4) and (6) indicates a rather

0.5 1.0 1.5 H(CieV)

FIG. 3. The z+-n electromagnetic mass difference as a
function of the cutoA' M (scale where we match the meson and
quark-gluon pictures). Dashed line: long-distance part calcu-
lated with pseudoscalar mesons only and with Aq&D =0.3 GeV,
m, (1 GeV) =0.12 GeV. Full line: long-distance part calculat-
ed with pseudoscalar, vector, and axial-vector mesons and with

AQco 0.3 GeV, m, (1 GeV) =0.1 2 GeV. Dash-dotted line:
same as the full line but with Aocn=0. 2 GeV and m, (1 GeV)
=0.18 GeV.
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gauge symmetry is given by

D„U =BpU —igI.„U+igURp . (8)

3 &M mgmp
&em

4 rr J o (q
2 +m 2 ) (q

2 +m 2 )
(10)

The same result can be derived by using the so-called
"hidden-symmetry" approach of Bando, Kugo, and

Yamawaki. " If we send the cutoff M to infinity in Eq.
(10) and assume the Kawarabayashi-Suzuki-Riazud-
din-Fayyazuddin relation, ' i.e., y =&2, we recover the
famous result obtained ' using current-algebra tech-
niques; namely, Am =(3a, /4n)(m~/m ) ln2=5. 1 MeV.
This successful extrapolation from 1 GeV to infinity re-

quires a huge correlation among heavier resonance con-
tributions. ' This can only be justified if the large-q
contributions are estimated in the framework of pertur-
bative QCD, which is precisely the basic feature of the
1/¹xpansion approach considered.

In the small-q limit (q «mi ~), Eq. (10) simply
reduces to Eq. (6). On the other hand, in the large-q
limit (q »mv~), Eq. (10) reproduces the q depen-
dence derived from perturbative QCD and given in Eq.
(4). Consequently, the inclusion of the (axial-)vector ex-
change contributions clearly improves the matching be-
tween perturbative QCD valid at large q and the meson

picture truncated to the pseudoscalar fields valid at small

q . This implies a better stability of the total x
mass diA'erence [Eqs. (4) and (10)] with respect to cutoA'

variations around the 1-GeV scale where both pictures
for strong interactions should be reasonable (see Fig. 3).
For m, ,

=42m~ and m, (1 GeV) =120 (180) MeV, we

obtain, respectively,

Am =4.4 (3.4) MeV if AQco =0.3 GeV,

Am =4.0 (3.0) MeV if AQco 0.2 GeV,

In the absence of kinetic terms for the (axial-)vector
mesons [second term in Eq. (7)], the Lagrangian reduces
simply to the kinetic terms given in Eq. (1). Note that
the perturbative-QCD result [see Eq. (4)] is not modified
since the coupling of the physical pions to the
(pseudo)scalar densities remains unchanged. The nondi-

agonal kinetic term |)„rrA" contained in Eq. (7) can be
rotated away by the following change of variables:

A„A„—x t)„2r, f~ yf, U U,

with x = (m~ —mi ) ' /m~my, y =m~/mv, and mg =m)
+ —,

'
y f g . Electromagnetism is incorporated by using

the substitution given in Eq. (5). Consequently, vector
dominance is implemented and the diagrams of Fig. 2(a)
are simply replaced by those of Fig. 2(b), with the
momentum-dependent hadronic vertices ' defined by
Eqs. (7) and (9). The integration over the photon low

momenta becomes then

Am (0 +,1,1 +)

to be compared with h." '=4.43 ~0.03 MeV. We note
that the numerical results in Eq. (11) are not very sensi-
tive to the value of the a ~ mass.

The explanation of the observed AI= —,
' rule in K de-

cays advocated in Ref. 4 is mainly based on the fact that
for low loop momenta, the logarithmic operator evolution
derived within perturbative QCD is turned into a physi-
cal quadratic one, giving rise to sizable long-distance
effects despite the small range of integration. Just like
for the z+-z mass difference considered in this Letter,
we expect that the (axial-)vector exchange contributions
play a crucial role in the matching of the two pictures
but not in the numerics. This is in fact supported by an
explicit calculation' of the effects of vector mesons on
another (AS =2) weak hadronic matrix element, i.e., the
B parameter.

In the case of the x+-z mass difference, the iden-
tification of the loop momentum of the virtual quarks
and gluons with the loop momentum of the virtual
mesons is straightforward since they are the same as the
one carried by the photon (see Figs. 1 and 2). For weak
hadronic matrix elements on the other hand, such an
identification is more involved since the standard
perturbative-QCD approach requires first the integration
of the W propagator. An exact identification would re-
quire the conservation of the explicit momentum flowing
through the W propagator. However, even in that case,
we would be left again with the usual arbitrariness of
AQ+D at the one-loop level.

In conclusion, the z+-x electromagnetic mass diff'er-

ence provides a nice illustration of the 1/¹xpansion ap-
proach for hadronic matrix elements proposed in Ref. 4.
It emphasizes the crucial role played by the (axial-)
vector mesons in the matching of the truncated meson
theory and perturbative QCD around 1 GeV. This sim-

ple analytical approach to estimate hadronic matrix ele-
ments manifestly deserves further investigations and
comparisons with other nonperturbative methods.

After completion of the work we became aware of a
meson one-loop calculation of the mass diff'erence using
a diA'erent parametrization for the (axial-)vector me-
sons. '
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