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We describe a novel feature of certain arrays of IV coupled nonlinear oscillators. Specifically, the
number of stable limit cycles scales as (N —1)!. To accommodate this huge multiplicity of attractors,
the basins of attraction crowd even more tightly in phase space with increasing V. Our simulations show
that for large enough /N, even minute levels of noise cause the system to hop freely among the many

coexisting stable attractors.

PACS numbers: 05.45.+b, 05.40.+j

Recent advances in understanding the dynamics of
nonlinear systems possessing a few degrees of freedom
have encouraged researchers to try to extend these re-
sults to systems with many degrees of freedom. In the
main, these studies are motivated by the desire to under-
stand the dynamical behavior of systems which have
nontrivial spatial structure— that is, systems traditional-
ly described by partial differential equations, though
coupled ordinary differential equations, coupled maps,
and cellular automata are also used. As models for spa-
tially extended systems, the main interest is for very
large N. In fact, progress has been slow, except in those
cases where the dynamics reduces to a low-dimensional
phase space. Part of the difficulty stems from the fact
that systems often exhibit dynamical behavior which is
intrinsically high dimensional. Phenomenological stud-
ies of such systems have revealed a number of intriguing
high-dimensional behaviors, including robust space-time
intermittency,'™® spatial periodic doubling,® phase or-
ganization and dynamical selection of minimally stable
states,*> self-organized criticality,®"'? and phase-locking
plateaus.'® Also, in certain coupled map lattices, a glo-
bal picture relating regimes of qualitatively different be-
havior is emerging. '*

In this paper, we describe a new high-dimensional be-
havior observed in arrays of N coupled oscillators. Typi-
cally, the array settles down into a stable periodic solu-
tion; however, this solution can coexist with other stable
periodic solutions. Each stable solution is an attractor,
so that nearby trajectories in phase space evolve toward
the attractor. For the oscillator arrays that we consider
here, the number of coexisting attractors increases explo-
sively with increasing N. As a result of this explosive
growth in the number of stable solutions, the attractors
crowd ever more tightly in phase space. For large
enough NV, the crowding is so severe that even a very
small level of external noise causes the system to hop
among the stable solutions. Below we present simula-
tions that show the onset of this hopping as N is in-
creased.

We base our description of attractor crowding on a
combination of numerical simulations of two nonlinear

oscillator systems—one of ordinary differential equa-
tions, the other iterative maps— and rigorous constraints
imposed by the underlying symmetry of the governing
dynamical equations. Though the symmetry considera-
tions give us a rigorous framework in which to under-
stand the observed dynamics, we will argue that the ex-
istence of a precise symmetry is not fundamental to the
phenomenon of attractor crowding.

We first observed the phenomenon of attractor crowd-
ing while studying coupled arrays of Josephson junctions.
These arrays have potential in a variety of applications, '
e.g., as generators of millimeter wave radiation, as sensi-
tive parametric amplifiers, and as voltage standards. For
example, the National Institute of Standards and Tech-
nology has tested circuits involving 2076 Josephson junc-
tions. '®

As part of a systematic study of the dynamics of series
arrays of Josephson junctions, we consider the circuit
shown in Fig. 1. The governing equations are, in dimen-
sionless form,!”'8

,B(p'k+¢'k+sin¢k+1=13, k=1,2,...,N, (1a)

LNi+f1/cNdz=§¢3k. (1b)

Here, ¢, represents the phase difference of the macro-
scopic wave function across the kth junction, I is the
current flowing through the inductor-capacitor load, and
I is a constant bias current. The dimensionless parame-
ters Ly, Cy, and B are measures of the inductance of the
load, capacitance of the load, and capacitance of the
junctions, respectively. Equation (1a) represents current
conservation, while Eq. (1b) equates the total voltage
across the array to the voltage across the load. (In these
units the voltage across the kth junction is just ¢x.)
Each junction is coupled to the rest of the array by the
current [; thus, the magnitude of 7 is a measure of the
coupling strength. In order to keep this coupling con-
stant while the number of junctions is varied, the nor-
malized inductance and capacitance are chosen to be
Ly=L/N and Cy=NC, where L and C are constants.
Notice that since the series array shares a common load,
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FIG. 1. Circuit schematic for series array of Josephson
junctions described by Egs. (1).

each junction is coupled to all the others; this form of
coupling is also familiar from mean-field descriptions of
spatially extended systems. This high connectivity is
significant in what follows.

This dynamical system has been studied in some de-
tail.'>'7-'" For practical applications it is desirable that
the junctions oscillate identically, ¢4 (z) =¢o(z) for all k.
The range of parameters over which such “in-phase”
solutions are stable has been determined numerically,
both for this'"'® and for a variety of other loads.'®'"" In
addition to the in-phase solution, this system can have
other stable solutions. For example, there are the anti-
phase solutions'”'® which have the following properties:
(i) Each ¢, is periodic, with the same period T, and (i)
or#=¢;, for j different from k.

From the viewpoint of dynamical systems, these anti-
phase solutions are of particular interest, because they
occur with extremely high multiplicity. This follows
rigorously from the symmetry of Egs. (1): These are in-
variant with respect to any interchange ¢x<>¢;. It fol-
lows that if X is a solution vector,

X=(91,61,02,02 . .. ,on,6n, L) ,

then so is the vector with any permutation of the {01},
In the case of an in-phase solution, these V! vectors all
describe the same phase-space orbit, but for an antiphase
state almost every permutation gives a distinct limit cy-
cle. We say ‘“‘almost” because, as it happens, the ob-
served antiphase state can have some residual symme-
try”"g; nevertheless, the condition ¢x=¢;, for j=k al-
ways obtains. This implies that there are at least
(N —1)! distinct limit cycles in phase space. This high
multiplicity of attractors is the key to understanding at-
tractor crowding.

Viewed as a function of NV, this represents an explosive
growth in the number of limit cycles. For the Josephson
junction array, these attractors crowd ever more closely,
so that the distance between them becomes vanishing
small as N — oo, To see this, note that each variable ¢4
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is defined on the circle, so that the subspace {ox} has to-
tal volume (27)"; each basin of attraction thus has
volume (27)N/(N—1)!. (This is an upper bound, since
in general there are additional attractors in the phase
space.) Thus, the characteristic linear dimension of each
basin is ~ ¥ V. In the limit of large N, this distance be-
tween attractors vanishes as 1/N.

Note that this argument depends on only gross fea-
tures of the dynamical system: In particular, the form of
the coupling and the underlying symmetry lead to large
multiplicities. In fact, the presence of strict symmetry is
not essential; rather, it allows an easy counting of attrac-
tors. We will return to this point later.

An important ramification of attractor crowding is
that, for sufficiently large arrays, even extremely low lev-
els of external noise can induce hopping among the coex-
isting attractors. In order to study this effect, we have
run simulations on a second system that also displays at-
tractor crowding, namely the set of coupled circle maps.

Q)(k)*" ¢(k)+a)+Asin(¢(k))
+%Zsin(¢(j))+\/;§(k), 2)
J

for k=1,2,...,N. This system has the same permuta-
tion symmetry as Eqgs. (1), and consequently the arith-
metic of attractor counting is unchanged. We note that
previous works™>'# on coupled lattice maps with nearest-
neighbor interactions has revealed cases of exponential
growth in the number of attractors with array size /V; in
the systems studied here, the connectivity is greater
—each oscillator is coupled to all the others—and this
results in a factorial growth. In general, Eq. (2) displays
both fully symmetric in-phase solutions, as well as vari-
ous symmetry-broken ones. Specifically, for =2,
A=0.5, and o =1, this system has stable, antiphase solu-
tions in which each ¢ *) has the same winding number.

We have studied the behavior of Eq. (2) subject to
random noise, with &% generated by choosing a uni-
formly distributed random number between —0.5 and
+0.5 at each iterate, independently for each k. For each
run, we pick random initial conditions, iterate without
noise to make sure the system settles down to an anti-
phase attractor, then turn on the noise, iterating until the
system crosses out of the original basin of attraction.
(Since the ordering of the ¢*) around the circle is
preserved for each attractor, the signature of a basin
boundary crossing was taken to be a change in this or-
dering.) For each value of N, fifty realizations were run
in order to compute a mean escape time .

The results of our simulations are summarized in Fig.
2, where 7 vs N is plotted for different values of noise in-
tensity k. The most striking feature is the rapid decrease
of t with /V; in effect, there is a cutoff V* above which
the system escapes the attractor almost immediately.
For larger « this cutoff is sharp, while for smaller noise it
is relatively gradual, making it difficult to assign a pre-
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FIG. 2. Mean escape time t vs number of maps N. (a)
k=10"2 (b) k=104 and (c) k=10"°,

cise value for V*. As expected, V* increases with de-
creasing noise strength.

Qualitatively, when V> N*, the system hops random-
ly from attractor to attractor. In this regime, the
characteristic dimension of a basin is comparable to (or
smaller than) the typical noise kick; consequently, we ex-
pect the details of the deterministic dynamics to be ir-
relevant insofar as this phase-space diffusion is con-
cerned. To test this, we ran simulations in which the
deterministic dynamics was switched off when the noise
was turned on. That is, once the system settled down
into an antiphase solution, the ensuing dynamics was a
pure random walk:

pW s g B 4 Jre W)

The result for the mean escape time (determined as be-
fore) versus /V is shown by the filled circles in Fig. 2(b).
Note that, except for very small NV, the two curves are

compatible. The fact that the filled circles fall below the
open circles reflects the fact that escape is more difficult
in Eq. (2), due to the presence of attracting dynamics
near the noise-free orbits.

We return now to the role of symmetry. In the two
examples cited above, the dynamics describe the interac-
tion of N identical elements. This is reflected by a sym-
metry (or “equivariance”) of the governing equations,
which allow us to compute the number of antiphase solu-
tions (and deduce their stability). However, this precise
symmetry is not essential: Attractor crowding depends
on the growing number of attractors, and this multiplici-
ty does not require symmetry. In general, the effect of
adding a sufficiently small symmetry-breaking term is
crucial only near a bifurcation point. Although such
terms fundamentally change the nature of the bifurca-
tion itself, away from a small neighborhood of the bifur-
cation point the number of attractors is unchanged. In
general, the robust character of such gross dynamical
features rests on correspondingly general features of the
governing evolution equations, namely smoothness of the
vector field and the fact that the attractors are hyperbol-
ic.

Although the existence of symmetry is not essential for
attractor crowding, we stress that the symmetric case
(coupled with perturbation theory) plays a crucial the-
oretical role, since only in this case is the direct compu-
tation of the number of attractors possible. To appreci-
ate this fact, suppose one wishes to count the number of
attractors for a large-N array having no apparent sym-
metry. Operationally, one is faced with a monumental
problem: How can we verify the existence of some V!
attractors by purely numerical means?

Finally, one may return to the original motivation for
studying Eq. (1), and ask is there are any practical
ramifications of Josephson junction arrays. As men-
tioned, the chief practical interest is in the existence (and
stability) of the in-phase solution. When this attractor
coexists with antiphase solutions, it may happen that the
competition for phase-space volume simultaneously
crowds the in-phase basin, leading to enhanced sensitivi-
ty to low-level noise of the in-phase state. Such a coex-
istence occurs in both array systems described in this pa-
per. (A characteristic signature of coexistence of attrac-
tors is hysteresis in the measured -current-voltage
curve.'”) Figure 3 shows the result of simulations of Eq.
(2) with w=1.45, A=0.5, and 6 =1, where the system
was put initially in an attracting symmetric state, in this
case the stable fixed point sing® = —w/(4 — o). As ex-
pected, the mean escape time from the in-phase state de-
creases with increasing N. This is a consequence of the
antiphase attractors crowding the in-phase attractor.
Whether the same phenomenon is present in the
differential equations (1) is currently under study.

In conclusion, we have described an intrinsically high-
dimensional behavior of certain coupled nonlinear oscil-
latory systems. The number of attractors in these sys-
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FIG. 3. Mean escape time 7 from the symmetric (in-phase)
attractor vs number of maps V; k =6x10 2,

tems increases dramatically as the number of oscillators
increases, resulting in the crowding of attractors in phase
space. The crowding makes these systems sensitive to
noise-driven hopping among the many coexisting attrac-
tors; large enough arrays will be sensitive to even ex-
tremely low levels of external noise.
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