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We present a generalization of Hamilton s geometric theory of turns, originally invented for SU(2), to
the noncompact group Sp(2, R) relevant in a variety of physical applications.
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Hamilton's method of turns' gives a remarkably vivid
pictorial description of the elements and structure of the
group SU(2). It associates "turns" (equivalence classes
of directed great circle arcs on a unit sphere) with ele-
ments of the group in a natural manner, and introduces a
noncommutative geometrical "addition" or composition
rule for them which reproduces the composition law of
the group. The resulting geometrical picture for SU(2)
is analogous to that for the Abelian translation group by
free vectors with the "parallelogram" law of addition.
Thus, the Pancharatnam angle, which constitutes an
early example of the Berry phase as generalized by
Aharonov and Anandan for nonadiabatic situations, is
the "sum" of the turns corresponding to the SU(2) po-
larization transformations taking the polarization vector
over a closed circuit on the unit Poincare sphere. It is
unfortunate that this elegant work of Hamilton is not as
widely known as it deserves to be, though a recent lucid
and comprehensive account of it has been provided by
Biedenharn and Louck.

The relevance of SU(2) in diverse quantum-mechan-
ical problems needs no emphasis. A closely related non-
compact simple Lie group, equally important in a variety
of physical applications, is the group of real linear
canonical transformations Sp(2, R) =SL(2,R), iso-
morphic to SU(1,1). It is the twofold covering group or
spinor group of the three-dimensional Lorentz group
SO(2, 1). We show in this Letter that Hamilton's ideas
can be generalized to Sp(2, R) in a useful manner. To
stress that we are now dealing with a noncompact group,
we use the term "screw" in place of "turn".

Fundamental to Hamilton's geometric representation
is the fact that for any two unit vectors n, n' on the unit
sphere g2

u(n, n') =n n' —inxn' o 6 SU(2) .

Here cx are the Pauli matrices. It is easy to see that any
u C SU(2) can be written as u(n, n') for suitable choice
of n, n'. The ordered pair (n, n') can be represented by
the directed great circle arc ( simply arc, hereafter) of
length ~ tr with tail at n and head at n'. Since u(n, n') is
unchanged if n and n' are subjected to the same SO(2)
rotation about n&a' as axis, we see that all arcs obtained
by sliding a given arc over its great circle represent one
and the same SU(2) element. Such an equivalence class

of arcs is called a turn, and we have a one-to-one
correspondence between turns and elements of SU(2).
From Eq. (1) we have

u(n, n') ' =u(n', n),
u(n', n")u(n, n') =u(n, n") .

(2a)

(2b)

From (2a) we see that inverses correspond to reversed
turns, and (2b) gives the "addition" rule for turns: Given
two SU(2) elements ut, uq, use the SO(2) freedom of
sliding arcs to choose the two representative arcs such
that the head of the ul arc coincides with the tail of the
u2 arc. Then the turn from the free tail to the free head
corresponds to the SU(2) product u2u~.

Now we consider the group Sp(2, R) for which we will
construct geometrical objects in a (2+1)-dimensional
Minkowski space Mz 1 with metric and Levi-Civita sym-
bol conventions

ri, t, =diag( —1, +1,+1), eo&2 =1. (3)

In place of the Pauli matrices we choose the set p,
defined by

2 —X+ l p p =X+ lp p
—p p =1, A a2A =|T~.

(sa)

(sb)

The Sp(2, R) SO(2, 1) homomorphism associates with
A a Lorentz transformation "about p as axis." This
leads to a classification of Sp(2, R) elements which is im-
portant for the theory of screws. We shall say
2 E Sp(2, R) is of type t, l, or s according as the vector
p is timelike, lightlike, or spacelike. Since p. p =X —1,
these correspond, respectively, to

~
X

~
( 1,

~
k

~
=1, and

~
X

~
& 1. The identity element and its negative value,

not covered in the above, correspond to vanishing p.
Every element retains its type under conjugation by any
element of Sp(2, R). We have here a classification of
finite-group elements going beyond a similar classifica-
tion of Lie algebra elements. This is related to the
known fact that Sp(2,R) is not of exponential type: The
range of the exponential map from sp(2, R) into Sp(2, R)

Po —a2, P~ =&O3
q P2 lC71

so that any A E Sp(2, R) can be uniquely written, using
a scalar X and a Lorentz vector p E M2 ~, as

1989 The American Physical Society 1331



VOLUME 62, NUMBER 12 PHYSICAL REVIEW LETTERS 20 MARCH 1989

On X, the analogs of great circles are constructed in the
following way. For given A e Sp(2, R) with axis p, we
define C (p) to be the intersection of X with the plane in

M21 (Lorentz) orthogonal to p and passing through the
origin:

C'(p ) = fx i
x.x = I, li x =Oj . ('7)

The nature of C'(p) depends on that of p: For p of type
t, l, and s, C (p) is, respectively, an ellipse, two parallel
straight lines (generators of Z), and the two branches of
a hyperbola.

As a first step towards generalizing the SU(2) con-
struction of u(n, n') to Sp(2, R), note that for any two
unit vectors x, y G Z,

A(x, y) =x y+ixxy p 6 Sp(2, R). (8)

A detailed analysis shows that the converse is also true:
Given any A C Sp(2, R) we can choose x, y on the corre-
sponding C(p) such that k=x. y, p=xxy, so that A
equals A(x, y). In fact we can choose x or y as we wish
on C (p), the other being then uniquely determined. We
define a screw for Sp(2, R) as an equivalence class of or-
dered points (x,y) on a F(p), the equivalence being with
respect to motion along C (p ) induced by SO(2, 1) trans-
formation about p as axis, and with respect to inversion
about the origin. Depending on the nature of p, a screw
is of type t, l, or s. The special elements ~1 E Sp(2, R)
correspond to the equivalence classes y= ~x. Clearly,
there is a one-to-one correspondence between elements of
Sp(2, R) and screws.

Next we turn to the question of connecting x and y by
a directed arc along C'(p). Here the interplay between
our t, I, or s classifications and the nonexponential nature
of Sp(2, R) shows up in an interesting way. In the t case
C (p) is a connected curve (ellipse) and we readily have
a connected arc from x to y along C (p). In the l and s
cases, C (p) is made of two pieces; and in these cases if X

is negative (i.e., A is not in the range of the exponential
map), then x and y are definitely on different branches
of C (p). This difficulty can be simply handled by mak-
ing use of the fact that if A is not in the range of the ex-
ponential map, then —lA is, and can be definitely repre-
sented by a connected arc on C (p) from x to —

y or
from —x to y. Since —l commutes with all elements of
Sp(2, R) it can be treated as a "ffag" in the composition
of screws (see below) corresponding to multiplication of
Sp(2, R) elements. Thus, in all cases a screw is a pair
consisting of an equivalence class of directed connected
arcs on a C (p) and a ffag which assumes the values +' 1.

consists of all elements of type t, type l with X =1, type s
with k ) 1, and the two elements ~ l.

The role of 5 in the SU(2) discussions is now played
by the unit single-sheeted spacelike hyperboloid X, in

M2 ).

2=ix
~
x x=1) &M21.

To complete the theory of screws we derive the geome-
trical rule for their composition to reproduce the Sp(2,
R) multiplication. For x,y, z E Z, we have from (8)

A (x,y) ' =A (y, x),
A(y, z)A(x, y) =A(x, z) .

(9a)

(9b)

Equation (9a) shows that inverses correspond to reversed
screws, and (9b) contains the geometric rule for compo-
sition of screws. Given two elements A, B E Sp(2, R), if
the corresponding C (p~) and C (pa) intersect at y, say,
on Z, then we can choose x on C (p~) and z on C (p8)
such that A =A(x, y) and 8=A(y, z). Then (9b) im-

plies that the screw from x to z corresponds to the
Sp(2, R) product BA. But unlike the great circles on S~,
C (pz ) and C (pz) may not always intersect. In fact
C (pz) and 8(pa) will intersect if and only if the vector
pz x pz is of type s. Of the six possible kinematical situ-
ations for the pair p~, p.~, in the four cases tt, th, ts, and
ll, P(pz ) and C (pz) definitely intersect so that (9b) im-
mediately gives the geometric addition rule for screws.
In the other two cases the situation is indefinite: De-
pending on the specific vectors p~ and pg, C(p~) and
C'(pa) may or may not intersect.

Fortunately, the following (rather remarkable) result
comes to our rescue: Any element B E Sp(2, R) can be
written (in many ways) as the product B=B"B' where
both B",B' E Sp(2, R) are of type t With th. is decompo-
sition theorem, which expresses an interesting structural
property of the group Sp(2, R), the product BA of any
two elements can be handled geometrically as an opera-
tion on screws, requiring at most two applications of
(9b). If A, B belong to one of the four cases tt, tl, ts, or
ll, we "slide" the representative arcs on C (p~) and
C (pa) till the "head" of the A screw and the "tail" of
the B screw coincide at y e C (p~) Cl C (pti). Then a sin-

gle use of (9b) gives for BA the screw from the tail of
the A screw to the head of the B screw. If A, B belong to
either the ls or ss case, and C (p~) 8 C (p~) =tzt, we use
the t-t decomposition theorem to write BA =8"8'A with
both B" and 8' being of type t. The screws for 8' and A
can then be composed geometrically using (9b) to give
the screw for 8'A; this can then be composed with the
screw for B",using (9b) again, to give the screw for BA.

This completes our generalization of Hamilton's theo-
ry to the noncompact group Sp(2, R). The role of great
circles on S for SU(2) is now played by C (li)'s which
are the intersections of planes through the origin with X.
Two difficulties were encountered: The first one was re-
lated to the nonexponential nature of Sp(2, R), and the
second to the fact that, unlike two great circles, two
P(p)'s are not guaranteed to intersect. The former was
overcome with the notion of a Aag and the latter using
the t-t decomposition theorem.

To conclude we outline some applications. The basic
building blocks of first-order optics are F(d), free prop-
agation through a distance d, and L(g), thin lens of
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power g. Both are of type I and are represented by the
Sp(2, R) matrices with Xd =1, pd =d(1,0, —1), and

kg =1, ps =g(1,0, 1), respectively. C (pd) consists of the
pair of straight lines (a, ~ 1, —a), a 6 %, on Z and
C (ps) consists of (a, + l, a). In Fig. 1, DB=BE is the
screw' for F(1) and FB =BC is the screw for L(1). An
important first-order system is the Fourier transformer 7
with Sp(2, R) matrix ipo. Its screw is the arc AB on the
waist circle. Now consider the Sp(2, R) product
F(1 )L (1 )F(1 ) which represents the focal-plane-to-
focal-plane transformation produced by a thin lens of
unit power. To compute this product, "add" the screw
DB for F(1) to the lens screw BC for L(1) to obtain the
screw DC for L(1)F(1). Slide DC along its C (p) to AD
and then add it to DB to obtain AB, the screw for
F(1)L(1)F(1). But AB is the Fourier-transformer
screw. Thus, we have a simple pictorial representaion of
the fact that the focal-plane-to-focal-plane transforma-
tion is indeed a Fourier transformation. Another way of
realizing P becomes obvious from Fig. 1. Add FB to BE
to obtain FE, the screw for F(1)L(1). Slide it to AF
and add to it FB to obtain AB as the screw for
L(1)F(1)L(1), showing that two lenses of unit power
separated by unit distance produce immediately after the
second lens the Fourier transform of the field distribution
immediately before the first lens.

Our classification of the Sp(2, R) elements is of

relevance to periodically focusing systems of which a
laser resonator is an example. " To find the ray-transfer
matrix for n periods we have to add n replicas of the
screw for one period. Clearly, a screw and its n-fold sum
are on the same C (p). Thus, we have a bounded system
if and only if C (p) is closed; i.e. , if it is of type t the usu-
al stability condition

~
trA

~
& 2 is the same as

~
X

~
& 1.

In an earlier paper Gaussian pure states were de-
scribed geometrically as points on the positive branch of
the timelike unit hyperboloid 0 in M2 ~, but the compo-
sition of Sp(2, R) systems acting on these states was han-
dled algebraically. Now we have a geometrical descrip-
tion also of the systems and their composition. Given a
screw and an arbitrary state P on 0, construct the plane
containing the screw (and the origin). Let the plane
through P parallel to this plane intersect 0 along the
curve y. It is clear that, under the SO(2, 1) transforma-
tion produced by the screw, P moves on y. As one conse-
quence we see that P will be an eigenstate of the screw if
and only if y was a point, i.e., if the latter plane was a
tangent plane to Q. It readily follows that for every

type telem-ent of Sp(2, R), and only for this type, there
is a Gaussian eigenstate, and that every Gaussian pure
state is the eigenstate of a one-parameter subgroup of
Sp(2, R) systems.

Given an arbitrary screw we can always slide it so that
its tail falls on the waist as shown by AB in Fig. 2. Now

"0

Xp

Xp

FIG. 1. Synthesis of Fourier transformer. The coordinates
of the marked points are A =(0,0, 1), B =(0, 1,0), C=( ——, ,

FIG. 2. Decomposition of an arbitrary screw into a waist
screw and a vertical screw, and a scheme for squeezing based
on the t-t decomposition theorem.
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construct the vertical screw CB lying in the plane con-
taining the xp axis, so that the given AB is the sum of the
waist screw AC and the vertical screw CB. Since waist
screws are SO(2) rotations and vertical screws are
boosts, it follows that every Sp(2, R) transformation is

uniquely a rotation followed by a boost.
Finally, we consider the problem of squeezing. ' Evo-

lution under the free Hamiltonian Hp corresponds to a
waist screw. The nonlinear interaction results in an s-
type generator of the form

H~ =a(xp+px)/2=ta(a —a )/2

in the Hamiltonian. If the nonlinearity is not strong
enough to make this term dominate Hp, the total Hamil-
tonian Hp+H~ will be a generator of type t and the state
will squeeze and unsqueeze during every period resulting
in a periodic evolution. Our t-t decomposition theorem
suggests a scheme for producing squeezing even with

small H~. Let the Hamiltonian be periodic with Hp act-
ing for a fraction v and Hp+Ht for the other fraction
(1 —v) of the period. With v =0.75, these two type-t
evolutions are given by the screws PQ and QR in Fig. 2.
The screw for one full period is PR which is a vertical
screw representing monotone squeezing. Details of these
and other applications will be presented elsewhere.
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