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Three-Body Treatment of the Final State in the ( He, pp ) Reaction on Medium-Mass Nuclei
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A parameter-free method is proposed for the analysis of transfer reactions leading to an unbound
three-body final state. The three-body dynamics are treated in the adiabatic approximation. The tech-
nique is applied successfully to new data for the 2sSi('He, pp) Si reaction.

PACS numbers: 24. 10.Eq, 25.55.Ek, 27.30.+t

(TR +UIB + U2B +H I2 Ef )4'p (x,R) =0, (2)

The A( He, pp)B transfer reaction is of considerable
theoretical interest in that the final state consists of three
particles in the continuum. New data' for the reaction
have recently become available on medium-mass targets.
The observed pp coincidence spectrum shows significant
enhancement at low pp relative energy e as a result of
the strong final-state interaction between the two pro-
tons. This energy dependence is not simply understood
within the Watson-Migdal theory of the final-state in-
teraction. In addition, our lack of any phenomenologi-
cal information on the diproton-residual-nucleus
eA'ective interaction in the final state makes the applica-
tion of distorted-wave Born-approximation prescrip-
tions' problematical. Similar difficulties in the final
state of the (d,pn) reaction have been discussed by
Austern. There is no published method which provides
a consistent theoretical description of the ( He, pp) reac-
tion.

The final state of the reaction can be usefully treated
as a three-body system, viz. , two emergent protons and
the residual nucleus in its final state. In this paper we

propose a novel, parameter-free method for an accurate
analysis of these three-body dynamics. The nature of the
e dependence of the pp coincidence spectrum is investi-
gated and the effective potential required to describe the
center-of-mass motion of the pp pair is also derived.

The transition amplitude of the reaction can be writ-
ten with a three-body (p+p+B) wave function 4', in

the final state. Explicitly,

T(e) =(~, (x,R)eB I VI„+V2„+~U„, I e,e,g &, (I)

where @3, @~, and +~ denote the wave functions of the
He, target, and residual nuclei, respectively, and V~ is

the nucleon-nucleon interaction between the emitted pro-
tons (1,2) and the transferred neutron (n). In line with
common procedure for light-ion reactions, we neglect the
small residual interaction term AU„, in T(e) (Ref. 6, p.
78). The entrance-channel distorted-wave function g;+,
with energy E;, is generated by a He+A optical poten-
tial.

The exit-channel wave function +, is simply related
to +,+ which obeys the Schrodinger equation

with

and

Dp(e) = p]2(e, x)(E'3 HI2)y3(x) dx, (4a)

It 3(x) = e3(x,y) dy . (4b)

Here, S is the spectroscopic factor for the (B
I
4) overlap

and —e3 is the He binding energy. The function

gf (e,R) is defined by

gf (& R) =(43(x)
I (e3 —HI2) I +e (x,R))/Do(e), (5)

with the bracket denoting integration over x. The func-

where U;B is the proton (i)+B optical potential, evalu-
ated at the mean energy of the emitted protons, TR is the
kinetic-energy operator for their center-of-mass coordi-
nate R [=(rI+r2)/2], x=ri —r2, and Ef is the final-
state energy Ef =E; +Q.

Our approach to solving Eq. (2) is to use the adiabatic
approximation, i.e., the sub-Hamiltonian 0 ~ 2

=T12
+ VI2 is replaced by e in Eq. (2). The resulting equa-
tion, in which x appears only as a parameter, is solved
numerically by the techniques of Amakawa et al. This
approximation has been shown to be reliable in the case
of deuteron-induced reactions at similar energies. ' The
adiabatic three-body wave function has the form
+,+ (x,R) =&I2(e,x)g~~ (x,R) where, asymptotically,
g~D(x, R) =exp(iP R)+outgoing waves. The pp rela-
tive wave function at energy e, &I2(e,x), satisfies
(HI2 —e)&I2(e,x) =0. The adiabatic wave function goes
beyond simple factorization in relative and center-of-
mass variables" as g~g still depends on x.

In the T matrix of Eq. (1), the separation I y I
of the

transferred neutron and the outgoing pp pair is forced to
be small by Vi„, V2„, and tIi3. Under the usual zero-
range assumption (Ref. 6, p. 99) that the transferred
neutron wave functions p„and g;+ are approximately
constant over a range 3 y and 3 y, respectively, we ob-
tain the simpler expression

T(e) =S' 'Do(e)„~gf *(e,R)y,*[(B/A)R]

xg;+ [(B/A)R1dR,
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tion gf (e,R) is normalized so as to have the standard asymptotic form, exp(iP R)+incoming waves. It describes

those components of the pp-pair center-of-mass motion with relative energy e and separations x ~ range of p3, which

contribute to the transfer process. We stress that gf (e,R) has no simple relationship with diproton-residual-nucleus
elastic scattering and has a meaning only within the transfer amplitude, Eq. (3). It is also convenient to define the

effective potential U,(r(e, R) which generates gf (e,R)*, that is

(Ef TR)gf (e,R)* &y3(x) t (e3 H]Q)(U/s+Ujg) t +, (x,R))
gf (~,R)* ()3(x) t (E3 —H~z) t +, (x,R))

(6)

The cross section to the final state of the pp pair with en-

ergy e can now be written

t T(e) t 'p(e),
dQde

(7)

where p(e) is the phase-space factor' and kf is the
final-state wave number. For comparison with the ex-
perimental data, the cross section and vector analyzing
power A~ are averaged over the energy range 0.966 MeV
~ ~~4.62 MeV.

The present method is applied to the Si( He,
pp) Si( —', , 3.62 MeV) reaction at 33 MeV. The He
optica1 potential and wave function of the transferred
neutron are taken from Ref. 2 and U;~ from Ref. 11.
For He we adopt the Phillips momentum-space wave
function, ' constructed via the Faddeev method, but
neglect the small singlet D-state components of the over-
lap. It is assumed that p~z(e, x) is a singlet 5 wave and
is calculated with the Reid soft-core potential. ' Both
relative S and D waves are taken into account in the
solution of the adiabatic approximation to Eq. (2). This
means that asymptotically the pp pair are assumed to be
in a singlet S wave but the nuclear potentials U;~ are al-
lowed to induce coupling to singlet D waves. For pp rel-
ative S waves, the Coulomb force deviates from the
point-charge form only for separations x~ 2R, which
provide very small contributions in Eq. (3). The
Coulomb force can also mix in pp relative D waves; how-
ever, these would contribute only through the small non-
spherical components of It3(x). Thus, to high accuracy,
the pp-nucleus Coulomb interaction can be assumed to
act at the center of mass of the pair.

Figure 1 shows the energy-averaged results for
(d o/d 0 de) and (Az). The experimental data are
reproduced with a spectroscopic factor S=0.38, con-
sistent with that from the Si(d,p) reaction. ' ' Fig-
ure 2 shows the double-differential cross section. The
calculations (solid curve) reproduce the bump in the ob-
served spectrum' due to the final-state interaction be-
tween the two protons. The Watson-Migdal theory (dot-
ted curve) fails to fit.

The nature of the t. dependence of the cross section
can be understood as follows. In Eq. (7) the e depen-
dence originates in three terms, Do, p, and gf (e,R)*. If
the t..dependence of gf is neglected, the e dependence of
the cross section is determined solely by the factor
Do(e)p(e), shown by the dashed curve in Fig. 2 (nor-
malized to the solid curve at the peak). This energy
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FIG. l. Energy-averaged cross section and vector-
analyzing-power angular distributions for the Si('He,
pp) Si( —, , 3.62 MeV) reaction at 33 MeV. The curves show

the results of the adiabatic Anal-state-interaction calculations.
The data are from Ref. 2.

t

dependence is very close to that of the full calculation
which is thus almost entirely understood in terms of
Do(e)p(e) and determined only by the relative motion

between the two protons. Additionally, this explains why

the e dependence of the observed coincidence spectrum is

essentially independent of the incident energy' and of
the nuclear final-state population. For this reason, in

Fig. 2, the 33-MeV data have been supplemented by
data at 52 MeV, ' which extend to lower e. These data
have been normalized to the 33-MeV data in their region
of energy overlap. In Ref. I, Do(E)p(e) was found to
provide a rather poor representation of the S2-MeV data.
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FIG. 2. Double-differential cross-section data for the
' Si('He, pp) Si( —', , 3.62 MeV) reaction at 33 MeV (Ref. 2)
(triangles) and 52 MeV (Ref. 1) (circles) as a function of pp
relative energy e for 0, = 19, 1 . The 52-MeV data are nor-
malized to the 33-MeV data. The curves are described in the
key and the text.

This conclusion can, however, be traced to the use of un™
necessary and somewhat inaccurate approximations in
that calculation for Do(e).

While the |. dependence of the coincidence spectrum is
determined by the relative motion between the two pro-
tons, its magnitude and angular dependence are strongly
infIuenced by the center-of-mass motion of the pp pair.
To investigate the nature of the center-of-mass motion,
the effective potential U, ir(t. ,R) has been calculated and
is shown in Fig. 3 for center-of-mass partial wave L, =5.
The weak e dependence seen arises from the fact that, in
the last form of U~a in Eq. (6), the numerator and
denominator have strong but essentially equal e depen-
dence. The efIective potential depends only very weakly
upon the pp center-of-mass partial wave. It is apparent
that the potential has a depth of approximately twice
U;z, very unlike that deduced from an analysis based on
a folding-model prescription for the final state. '

Figure 2 (dotted curve) shows that the E dependence
of the coincidence spectrum is not explained by the
Watson-Migdal theory. This theory gives the t' depen-
dence to be of the form F(E) p(e), where F(e)
=sin[6~(e)]/[t.' C(e)] with 6~ the nuclear part of the
phase shift and C(e) the Coulomb penetration factor'
for pp scattering in the singlet 5 state. The failure thus
arises from a difference between F and Do(e). The
Watson-Migdal theory successfully describes the spectra
of mesons produced in %% collisions where a short-
range transition operator is involved. Do(e), on the oth-
er hand, is determined by an x integration over the range
of I/3 ( 5 1 5 fm). The Watson-Migdal factorization of
p~z(e, x), into F(e)p~q(e', x)/F(e), where F is the reso-
nance energy, is accurate, however, only for small x (up
to 4.0 fm). The factorization is thus not applicable for

FIG. 3. Real and imaginary parts of the eAective interaction
U,lr(e, R), Eq. (6), in the L =5 pp center-of-mass partial wave,
as a function of pp relative energy e for the Si( He, pp) Si
reaction at 33 MeV.

the calculation of Do(e) which deviates markedly from
F(e). The failure of the Watson-Migdal theory is thus
due to the poorly localized nature of the pp distribution
in He. The applicability of the present method is in-

dependent of this consideration. A similar failure has
been reported for long-ranged charge-exchange processes
such as the (d,pp) reaction. '

In this paper we propose a novel method for the treat-
ment of the final-state interaction in the ( He, pp)
transfer reaction in which the transition amplitude in-
corporates a three-body (p+p+8) wave function in the
exit channel. The adiabatic approximation provides an
accurate and parameter-free prescription for the calcula-
tion of this wave function for medium-mass nuclei from
the underlying nucleon-nucleon and nucleon-residual nu-
cleus interactions. A diproton optical potential does not
enter. The method gives good agreement with the ob-
served angular and e dependence of the cross section and
vector analyzing power A~. The strong enhancement in
the observed pp coincidence spectrum at low e is deter-
mined by Do(e), Eq. (4), i.e., the relative motion be-
tween the two protons, but is little influenced by their
center-of-mass motion. The efIective potential generat-
ing the center-of-mass motion is very weakly dependent
on e and has a strong inAuence upon the magnitude and
angular distribution of the cross section and A~. A
reasonable way of simulating the results of the complete
three-body model with a standard (zero-range)
distorted-wave Born-approximation computer code thus
suggests itself: Take UI(e, R) from an adiabatic calcu-
lation at a chosen e as a final-channel distorting potential
and replace the conventional zero-range parameter Do
by Do(E)p(E)

Our approach to the final-state interaction is more
generally applicable to other nuclear systems, in particu-
lar to processes such as ( He, pp) (Ref. 18) and
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( Be, He, He) (Ref. 19).
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