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The direct determination of the f(a) singularity spectrum from experimental data is a difficult prob-

lem. This Letter introduces a simple method for computing f(a) based on the tbeorems of Shannon, Eg-

gelston, and Billingsley which is markedly superior to other recently proposed methods, especially when

dealing with experimental data from low-dimensional chaotic systems where the underlying dynamics

are unknown.

PACS nombers: 05.45.+b, 02.50.+s, 03.40.6c, 47. 10.+g

The long-time behavior of chaotic, nonlinear dynami-
cal systems can often be characterized by fractal or mul-
tifractal measures which correspond, for example, to the
invariant probability distribution on a strange attractor, '

the distribution of voltage drops across a random resistor
network, the distribution of growth probabilities on the
external surface of a diAusion-limited aggregate, or the
spatial distribution of dissipative regions in a turbulent
flow. Various "multifractal formalisms" have recently
been developed to describe the statistical properties of
these measures in terms of their singularity spectrum'
f(a), or their generalized dimensions D~.

The f(a) singularity spectrum provides a mathemati-
cally precise and naturally intuitive description of the
multifractal measure in terms of interwoven sets, with
singularity strength a, whose HausdorA dimension is

f(a). If we cover the support of the measure with boxes
of size L and define P; (L) as the probability (integrated
measure) in the ith box, then we can define an exponent
(singularity strength) a, by

P; (L)—L"

and, if we count the number of boxes N(a) where the
probability P; has singularity strength between a and
a+da, then f(rr) can be loosely defined' as the fractal
dimension of the set of boxes with singularity strength e
by

N(a) —L

The "generalized dimensions" Dq, which correspond to

scaling exponents for the qth moments of the measure,
provide an alternative description of the singular mea-
sure. They are defined as

log+; P,~(L )
Dq = lim

q
—1 I -0 logL

When f(a) and Dq are smooth functions of a and q,
then f(a) is simply related to r(q) =(q —1)Dq by a
Legendre transformation. ' This relationship reflects a
deep connection with the thermodynamic formalism of
equilibrium statistical mechanics where r(q) and q are
conjugate thermodynamic variables to f(a) and a. In
these cases the f(a) and the D~ curves can be easily
transformed into the other. In fact, since the Dq's have
in the past been easier to evaluate for measures arising
from real or computer experiments, the f(a) curves have

usually been determined by the Legendre transform of
the r(q) curve. Such an operation involves first smooth-

ing the Dq curve and then Legendre transforming. This
has several disadvantages. The error bars from the
smoothing procedure make the estimation of the error
bars from the data itself more di%cult. In addition, if
the f(a) or r(a) curves exhibit any discontinuities, then
the smoothing procedure usually causes one to miss these
"phase transitions. "

The purpose of this Letter is to describe a novel pro-
cedure for the direct evaluation of f(a) (without resort-
ing to the intermediate Legendre transform), which is

mathematically precise and can be readily applied to the
analysis of real experimental data where the underlying
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dynamics are unknown.
Several methods ' ' ' have recently been proposed

for the direct computation of f(a) based on log-log plots
of the quantities in Eqs. (1) and (2). Unfortunately, the
application of these methods to numerical or experimen-
tal data suffers from mathematical ambiguities (i.e., is f
a HausdorA' or a box dimension) and from large errors
due to logarithmic corrections' ' which arise from the
scale-dependent prefactors in Eq. (2). (Despite these
quantitative inaccuracies, ' these methods do provide
important qualitative information about the statistical
properties of the measure. )

Our method circumvents these difficulties. In an efI'ort

to avoid confusion with the other f(a) and D~ formal-
isms, we will develop this statistical description of the
self-similar scaling properties of the singularities of a
multifractal measure from first principles.

If we seek to describe a singular measure P(x), then
one quantity of interest is the HausdorA dimension of the
measure theoretic support of P(x). This is simply the
infimum of the dimensions of the sets on which all the
measure lives (i.e. , the complements of these sets have
zero measure). For a special class of measures that arise
from multiplicative processes (described by probabilities
P;), there are several theorems that give us information
on how to compute the dimension of the measure
theoretic support of such a measure. In particular, we
know ' that the entropy 5 of such a process is given by

5 = —gP; logP;, (4)

and that the HausdorA' dimension of Al, which is the
measure theoretic support of the measure associated with
such a process, can be related to the entropy by a theo-
rem by Billingsley' which gives

N

di, (Jlf) = —lim gP; logP; .
N —~ logN 1'=i

(5)

As in the definition of the "generalized dimensions" [Eq.
(3)], the parameter q provides a microscope for explor-
ing diAerent regions of the singular measure. For q & 1,
p(q) amplifies the more singular regions of P, while for

q & 1 it accentuates the less singular regions, and for

q =1 the measure p(1) replicates the original measure.
Then the HausdorA dimension of the measure theoretic
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If we bin the experimental measure under considera-
tion in such a way that the P; (L) correspond to the prob-
abilities of a multiplicative process with N —L, then
Eq. (5) provides a formula for computing the HausdorfY
dimension of the set, which is the measure theoretic sup-
port of P(x).

We now use these results to evaluate f(a) for a mul-
tifractal measure P(x). This is done by first construct-
ing a one-parameter family of normalized measures p(q)
where the probabilities in the boxes of size L are

p; (q, L) = [P;(L)1 /g[P, (L)]

support of p(q) is given by' Eq. (5)

f(q ) = —lim P p; (q, L )log [p; (q, L ) ]N- logN i=i

g;p;(q, L)iog[p;(q, L)]= lim
L 0 logI.

In addition, we can compute the average value of the
singularity strength a; = log(P; )/log L with respect to
p (q ) (Ref. 20) by evaluating

N

a (q) = —lim g p; (q, L ) log [P;(L) ]N- logN I =i

g, l, (q, I.)log [P;(I.)]= lim 8
L 0 logL

Equations (7) and (8) provide a relationship between
a HausdorA' dimension f and an average singularity
strength a as implicit functions of the parameter q.
Moreover, it is easy to exploit the obvious relationship of
these definitions of f(q) and a(q) to the definition of the
generalized dimensions in Eq. (3) to show ' that
f=qa —r and a =dr/dq. These are precisely the Legen-
dre transform relations' between the generalized dimen-
sions and the original singularity spectrum f(a). There-
fore, Eqs. (7) and (8) provide an alternative definition of
the singularity spectrum, which, most importantly, can
be easily used to accurately compute the f(a) curves
directly from experimental data without the intermediate
Legendre transform of the r(q) curve, without confusing
the box dimension and the Hausdorfr dimension, without
neglecting logarithmic corrections, and without sufIering
from poor sampling statistics for large and small values
of the singularity strength. Although the relationships
[Eqs. (7) and (8)] have appeared previously in more for-
mal discussions of the relationships between the mul-
tifractal and thermodynamic formalisms, ' we believe
that we are the first to suggest and demonstrate that
these formulas provide a practical, efficient, and highly
accurate method for the direct computation of singulari-
ty spectrum f(a).

To illustrate our method we examine two difrerent sit-
uations. First, we analyze an analytically solvable exam-
ple (two-scale Cantor measure or binomial measure) to
evaluate the accuracy of the method. Then we apply this
method to laboratory data for the dissipation field in ful-
ly developed turbulence. '

Consider the two-scale Cantor measure, which is gen-
erated by dividing the unit interval into two pieces, each
of half the previous length, but with unequal measure
(say p~ and pz) and repeating this process ad infinitum.
Then the measure at the nth level of this mulitplicative
process would consist of N=a" pieces (here a =2) of
equal length, L =a " with probabilities P;(L) =p| p2
(k =0, . . . ,n). For our example we choose p~ =0.7 and
p2=0. 3 (Ref. 4) and by construction a =2. We calcu-
late the f(a) curve by first covering the measure with
boxes of length Z. =2 " and computing the probabilities
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FICJ. 1. Comparison of the f(a) curves for a two-scale bi-
nomial) Cantor measure, with ll =l2=0.5, pl=0. 7, p2=0. 3,
determined analytically (solid line) using our direct method

—nwith box sizes of the form 2 " (circles) and (1.1 squares .

P;(L) in each of the boxes. We then construct the
one-parameter family of normalized measures with

p;(q, L) defined by Eq. (6). Finally, for each value of q
we evaluate the numerators on the right-hand sides of
Eqs. (7) and (8) [P;p;(q, L)log[p;(q, L)] and P;p; q,
L)log[P;(L)], respectively1 for decreasing box sizes (in-
creasing n), and we extract f(q) and a(q) from the
slopes of the graphs of the numerators versus logL. Fig-
ure 1 shows that the f(q) curve calculated from Eqs. (7)
and (8) is in excellent agreement with the known analyt-
ical result. ' In Fig. 2, we provide an example of the
linear fit to P;p;(q, L)log[p;(q, L)] vs logL for three
diff'erent values of q to show that there is no ambiguity in

the determination of the slopes. However, in general
(and in most experimental situations) we do not know
the correct base a of the multiplicative process. Conse-
quently, the entropy computed using Eq. (7) with some
other base will always be greater than, or equal to, the

18true entropy.
To evaluate our method under these circumstances, we

cover the binomial measure with boxes of size
L =(1.1) " and show in Fig. 1 that the agreement of
our results for f(a) with the analytical results is still
very good. In fact, Billingsley' provides bounds on the

.imitsize of these errors and assures us that in the limi
N ~ (L 0) this result will still converge to the
correct Hausdorfr dimension. However, Fig. 2 shows
that for any finite range of L, we must now fiw find the best
linear fit to oscillating points which gives rise to the as-
sociated "error bars" in Fig. 1. Notice that despite these
errors, ourour method reproduces the top of the f a curve
very accurately (including the values of Do an
while other methods consistently overshoot or undershoot
the values of D0 and D1 without carefully including

q—11 —12 —10

log, (LI
FIG. 2. Examples of linear fits to the semilog plots used to

calculate f(q) for the two-scale Cantor measure considered in
F'

1 with q =1 (diamonds), q =2 (circles), and q=3FIg. wI q-
). The solid symbols correspond to box sizes o eof thesquares .

form 2 " and the open symbols to box sizes of (1.1) ". The
error bars in Fig. l are determined by the range of reasonab e
fits to the data.

9, 10, 12-15finite-size corrections. '

Finally, we apply our method to laboratory data aris-
ing from one-dimensional cuts through the dissipation
field of fully developed turbulence at a moderate Rey-
nolds number. Earlier work ' has shown that the dissi-
pation field can be characterized by a multifractal. For
these one-dimensional cuts, Do or max[f(a)] is equal to
1.0 (Ref. 4). Figure 3 shows a comparison of the f(a)
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FIG. 3. Comparison between a (microcanonica mmethod
(Ref. 13) (circles) to compute f(a) based on the scaling of his-
tograms (with first-order corrections) and the (canonical)
method described here (squares) for the dissipation field of ful-

ly developed turbulence at a moderate Reynolds number.
From various experimental results e . 4 we know that
maxlf(a)] is 1.0.
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curves for this data computed from our method and that
from the method of scaling of histograms. ' Note that
the direct method proposed in Ref. 13 undershoots the
correct value of Do by almost 20% despite taking first-
order corrections into account.

In conclusion, we have proposed a simple yet accurate
method for the direct determination of f(ct) that is spe-
cially suited for analyzing experimental data. It is al-
ways extremely accurate in the region around Do, wheth-
er or not we know the underlying dynamics. This is im-
portant because it is precisely in this region that experi-
mental data are the most reliable and one needs a
method to process them without adding any errors. A
detailed discussion on the calculation of f(a) curves for
fully developed turbulence and for maps displaying
phase-transition behavior will be published shortly.
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